
CO
.0

1
if) o

Q

3 H
'-/) CO
JJ UJ

a,
8
UJ
. I

'!..

ESD-TDR.-65-68

SCtENTIFil :.S!GM

fTCl

i$&i

The work reported in this document was performed at| Lincoln
Laboratory, a center for research operated by Massachusetts
Institute of Technology, with the support of the U.S. Air Force
under Contract AF 19 (628}-500. The computer time was sup-
ported by Project MAC, an M.I.T. research program sponsored
by the Advanced Research Projects Agency, Department of De-
fense, under Office of Naval Research Contract Nonr-4102(01).

f>5

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

ON-LINE DOCUMENTATION

OF THE COMPATIBLE TIME-SHARING SYSTEM

J. it. WINETT

Group 28

TECHNICAL REPORT 387

12 MAY 1965

LEXINGTON MA SSA CH V SETTS

ON-LINE DOCUMENTATION

OF THE COMPATIBLE TIME-SHARING SYSTEM*

ABSTRACT

The dissemination of information about computer programs is hampered because of the

lack of conformity in documentation, the delays inherent in any distribution system,

and the inability to select only desired information without being flooded with infor-

mation which is not of present interest. An on-line system for storing and retrieving

information about the programs associated with the Compatible Time-Sharing System

(CTSS) has been developed to be included as a CTSS command. This system will help

to document the system commands, supervisor entries, library subprograms, and public

programs. These types of programs have been chosen since there is an urgent need for

having this documentation available on demand, i.e., on-line.

Accepted for the Air Force

Stanley J. Wisniewski

Lt Colonel, USAF

Chief, Lincoln Laboratory Office

* This report is based on a thesis of the same title submitted to the Department of Elec-

trical Engineering at the Massachusetts Institute of Technology on 18 January 1965,
in partial fulfillment of the requirements for the Degree of Electrical Engineer.

TABLE OF CONTENTS

Abstract iii

Acknowledgment vi

I. Introduction 1

II. Program Documentation 1

III. The Compatible Time-Sharing System 5

A. Computation Facility 5

B. Documentation of CTSS 6

IV. The On-Line Documentation System 8

A. Objectives 8

B. System Usage 10

C. User-System Interaction 14

D. The Data Base for the INFO System 17

V. Design Considerations 19

A. General Approach 1'

B. System Features 21

C. Language Features 21

D. Storage Considerations 22

F. Console Printing 25

F. System Response 26

VI. The Programming Language 27

A. The COMIT Language 27

B. Use of COMIT Features 30

VII. Additional Modifications 30

VIII. Summary 31

References 32

Appendix A — Printing from a Session with the On-Line
INFO System 33

Appendix B - List of Public Programs 39

Appendix C — Subroutine Usage Table for TSLIB1 41

ACKNOWLEDGMENT

The author acknowledges the support given by the M. I. T. Lincoln Laboratory under the

Staff Associate Program for the pursuance of the graduate work for which this thesis has

been a part. The atmosphere for carrying out this research and the computer time on

the Compatible Time-Sharing System has been provided by Project MAC.

The author would like to express his appreciation to the members of the Mechanical

Translation Group of the Research Laboratory of Electronics, under the supervision of

Dr. Victor Yngve, for adapting COMIT for use with CTSS and for their continuing ef-

forts to make COMIT more useful as a programming language. The author is grateful to

Professor Corbato for his supervision of this thesis, and would like to give special rec-

ognition to him for the development of the Compatible Time-Sharing System.

vi

ON-LINE DOCUMENTATION

OF THE COMPATIBLE TIME-SHARING SYSTEM

I. INTRODUCTION

The dissemination of information about computer programs is hampered by the lack of

conformity in documentation, the delays inherent in any distribution system, and the inability to

select only desired information without being flooded with information which i. nol of present

interest. An on-line system for storing and retrieving information about the programs associated

with the Compatible Time-Sharing System (CTSS) has been developed to be included as a CTSS

command (Kef. 1), This system will help to document the system commands, supervisor entries,

library subprograms, and public programs. These categories of programs have been chosen

because there is an urgent need for having this documentation available on demand, i.e., on-line.

In Sec. II of this report, some of the problems encountered with presenl procedures for

documenting programs are discussed, 'and an attempt is made to categorize the different types

of documentation according to the detail of the information. Section III describes (' 1'SS and

Sec. IV describes the INFO system, a model for an on-line documentation system, indicating

the objectives of the system and directions for its use. Section V discusses some of the con-

siderations used in implementing the information system. Section VI describes the COMIT

programming language and how some of its features are used in the INFO system. Section VII

suggests some further modification to this on-line storage and retrieval system, and Sec. VIII

summarizes the research work.

II. PROGRAM DOCUMENTATION

The documenting of computer programs has been a problem since the development of the

programmed computer (Ref. 2). Whenever a computer program is written oi .1 pr igramming

system developed, it must be described by a set of documents which satisfy the needs or curi-

osity of the various people who desire to use or modify the program or system. The type of

documentation desired varies, depending on one's interest. To the very uninformed, the title

or name of the program may be sufficient. On the other hand, to a person who wants to make ;i

change in a program, a listing of the program in the original programming language is required.

Thus, depending on one's purpose, various forms of documentation are needed.

liven though a computer- is a finite state machine with a finite memory and has limited com-

putation power (assuming a limited running time), a vast number of computati in ilgorithms can

be written by specifying a sequence of computer instructions. Many of these sequence! . in the

form of subroutines, can be included in different computation algorithms. Thus, nice a

programmer solves one problem, the techniques used (the routines used in a program) can

often be useful in solving another problem.

In order for a program written by one programmer to be useful to another programmer, it

must be documented in such a way that the second programmer can use the program without

first analyzing it. This means that the documentation should clearly state the calling sequence

of the routine, giving the format of input parameters, the process the routine performs on the

parameters, the format of the resultant output parameters, and the various exits from the rou-

tine. Programmers should be encouraged to document their work and should be permitted to

devote the necessary time and effort required to provide meaningful documentation. Unfortu-

nately, the attempt to document a set of programs is rarely successful; consequently, it is

often easier to rewrite a program than :'t is to analyze one already written to determine how

to use it.

Computer programmers, like most scientists, are exceedingly demanding in their quest for

written information, but are reluctant to provide written information about their own work. This

is not to say that programmers are selfish and want to keep their work to themselves, but rather

to point out the difficulty in satisfying the demand for documentation. Good written documentation

is provided by programmers who have a public spirited attitude and pride in their work. Once

the documentation of a program is provided, it is up to the interested person to read and study

the documentation.

Knowing how to do something requires more than just documentation. Many problems, such

as lack of knowledge, are blamed on poor documentation. No amount of documentation can re-

place the thinking process and the effort required to learn about the work of others. The problem

of keeping aware of current information is not an easy one. Nevertheless, the advent of larger

computers and more sophisticated programming systems makes it highly desirable to improve

communications among programmers in order to minimize redundant effort.

Once the desired documentation of a program is provided, preferably by the original author

of the program, the documentation must be distributed or made available to those who want to

be informed about the program. Thus, the problem of documenting computer programs may be

separated into two parts: (1) How to prepare the documentation, and (2) how to make the doc-

umentation available to the right people at the right time. First, we shall consider how to

prepare the documentation of a program, then we shall discuss ways of disseminating program

information.

In discussing how to prepare the documentation of a program, we must indicate the type of

description needed and how this type is to be prepared. Since different people have different

requirements, a program must be described in many ways. Various readers require different

kinds of documentation to varying amounts of detail. The complete documentation of a program

might be provided by the following ten document items tailored to the needs of different people.

(1) Program Name: — This alone might be sufficient to indicate that a
program is or is not of interest.

(2) Classification: - If a short title or name is not sufficient to indicate
the general class of problem with which a program is concerned, then
a set of related titles, key words, or descriptors would be useful.

(3) Sentence Description of When Used: - A few sentences indicating the
context in which a program might be used would supplement the infor-
mation supplied by the classification descriptors.

(4) Paragraph Description of What Is Performed: - A paragraph de-
scribing what a program does should give all the information a
user would need to determine whether or not he wished to use the
program. It is here that the purpose of a program is indicated.

(5) Program Usage: — A description of how a program is used might
include a calling sequence if it is a subprogram, parameters if it is a
command program, or operating instructions if it is a main system.
If the program itself is a versatile system, this might indicate some
other extensive manual as a reference.

(6) Program Information: — This information might include such items as:

(a) The author of a program

(b) A mailing list of people interested in the program

(c) Amount of storage required

(d) System symbols or entries to the program

(e) Other subprograms which the given program uses

(f) Data common to other programs

(g) Speed of execution

(h) Programming language in which it is written

(i) Precision in which numerical data are calculated

(j) Type °f program, i.e., pure procedure, generalized
subroutine, recursive subroutine, etc.

The following types of documentation could be helpful in determining the algorithms used

by a program:

(7) Page Description of Process: — In this item of documentation, the process
performed by the program is described. Details are included winch are
not essential to its use but which would concern those making modifications
to the program.

(8) Flow Chart of Procedure: — Flow charts in the form of block diagrams
describe the procedures carried out by a program. The level of detail
shown by a flow chart varies to some degree, but it is here that the
implementation of a process might be first determined.

(9) Description of Flow-Charted Process: — This includes the description of
algorithms used and how they are implemented. If a program is written
in a way that makes use of particular computer characteristics, e.g.,
the bit format of a computer word, this fact must be described in detail.
This type of documentation is most detailed and includes all phases of a
program's coding. It is quite often eliminated, since it is here that a
great amount of time and effort is required for documentation.

(10) Program Listing: - The most detailed description is the program listing,
written in a commonly understood programming language. Listings are
easy to produce but substantial effort is required to determine from this
type of documentation what a program does and how it is to be used. It
is true that some programming languages are more easily understood
than others (e.g., MAD rather than FAP), but nevertheless, the reader
is presented with a myriad of details so that the overall operations of
the program are buried within the details.

Note that in items (3). (4), and (7) the length of the documentation (i.e.. sentence, paragraph,

or page) is used as an indication of the amount of detail presented. Program Information,

item (6), lumps together all miscellaneous items which might be pertinent to sonic programs,

but not to others. If these ten items of documentation were provided for all programs, a certain

amount of standardization would be achieved and the needed information might be available.

Fven assuming that programs were documented as set forth, the problem of making the doc-

umentation available at the time it is needed still exists.

Let us consider the problem of how to prepare this documentation. Only the author of a

program is really qualified to describe what the program does, but quite often he is more in-

terested in writing or thinking about new programs than in spending his time documenting what

he has already done. Also, a good programmer is not necessarily a good manual writer. If

the documentation of a program is to be easily understood by a user, then the documentation

should conform to certain minimum standards of format and types of items that must be included

in the documentation. Thus, there arises a need for a system to help authors document their

programs. (A system for this purpose has been developed for documenting the programs asso-

iated with CTSS and will be described in Sec. IV).

In addition, there is the problem of how to make the documentation available to the right

people at the right time. There are two types of problems with which a user is concerned:

The first is determining in which program or programs he is interested, and the second is ob-

taining information about a specific program.

Consider the problem of determining the program or programs of interest. If the programs

in the system were classified by using category descriptors organized into a hierarchical tree-

like structure, a user could examine categories of programs until he found one that included the

program or programs in which he is interested. For example, a user might request the sub-

descriptor categories under the descriptor "COMMAND" and obtain a list of descriptors used to

classify commands. The user may then list the names of the programs under a particular cate-

gory, e.g., under the descriptor "EDITING". Although it is not necessary that the set of de-

scriptors form a hierarchy, the useful concept of sub and super categories might be helpful in

isolating a particular program. The problem of category retrieval is based upon a useful as-

signment of descriptors or key words to a program and the lumping together of descriptors into

more general classifications. No suggestions are being offered on how to generate a set of useful

descriptors or how to incorporate changes in the structural organization of descriptor categories.

Another type of retrieval problem is centered around miscellaneous program information

(item (6) of the previous list). A user of a system might want to know which subprograms are

used, i.e., called by a given program, or how much space is required by a program and all those

programs which it calls. This information would be useful when incremental changes to a pro-

gram result in small, but persistent, increases in the program size. Consequently, the program

may take up more space than is available. Conversely, a user might want to know which pro-

grams call a given program or a particular entry to a given program. This information is useful

when a change is contemplated in the given program and one is interested in the consequences

of such a change. Other types of retrieval request which a user might like to ask would involve

finding the programs written by a particular author or written since a given date. When a user

wants information about a particular- program, he may want all the available documentation, or

he may want only one item of information, e.g. , its usage. This need is most common to on-

line users of a computation facility who forget the calling sequence of a program and would like

to find this information as soon as possible and with the least amount of effort.

Thus, we have indicated the types of documentation that are needed and the types of retrieval

requests that a user might want to make. It should be pointed out that the problem of retrieving

documentation on computer programs is similar to the library problem of general information

retrieval, although it is quantitatively different. The library problem is caused by the enormous

proliferation of published material and the difficulty of relating one article or book to another.

In solving the library problem, the information scientist, using techniques of analysis, attempts

to relate or categorize items for retrieval on the basis of specific criteria,

On the other hand, the problem of documenting computer programs is concerned with spec-

ifying information in such a way that it can be communicated from one person to another. The

information scientist is free to organize and specify the information as lie deems best, so thai

it can be understood by someone unfamiliar with the information. It can be said thai to sonic

degree the library problem is one of analysis, whereas the documenting of computer programs

is one of synthesis. The central problems are that the library information must be analyzed to

determine related items and the computer information, once synthesized, must lie distributed to

the right people. Both attempt to provide all pertinent and useful information without creating

a flood of written material.

The Compatible Time-Sharing System provides a means of attacking the retrieval problem

through interaction with an on-line user and, in addition, provides a means of uncovering the

particular needs of the on-line programmer. The prohlem of program documentation is part

of the general information retrieval problem and must contend with the problems associated

with storing a large body of information and searching for items which satisfy a particular need.

By restricting the information base to that of the computer programs associated with CTSS, the

problem becomes quantitatively more manageable,

III. THE COMPATIBLE TIME-SHARING SYSTEM

A. Computation Facility

The Compatible Time-Sharing System (CTSS) is a programming system for a configuration

of computer hardware centered around the 7094 computer. The hardware consists of a 7094

computer with two $Zk word core memories: tape, drum and disk storage; and a 7750 com-

munications computer which handles input/output messages to and from remote consoles.

A programmer at a console communicates with the system through a set of commands. These

commands allow the user-programmer to write and run programs using standard procedures

with the added feature of having on-line interaction witli his program. Through the use of the

command language, a user can perform many tasks which make the computation facility more

accessible.

fn addition to the command programs, the time-sharing supervisor contains programs

associated with the auxiliary storage devices and the system as a whole. These routines perform

for the user of the system the necessary code conversions, buffering, and accounting which the

hardware devices require. These tasks, performed by the time-sharing supervisor, are called

upon by special entries to the supervisor. The set of supervisor entries are, in essence, a set

of routines which the programmer can make use of in his programs. The user-programmer can

also draw upon a standard library of subprograms for direct inclusion in his computation al-

gorithms. These library subprograms may in turn call upon the supervisor routines to handle

input/ouput functions.

Besides the system commands, supervisor entries, and library subprograms, ;i user has

access to a set of programs which are stored in a public file. Thus, from a users point of view,

the four types of programs associated with CTSS are: (a) System Commands, (b) Supervisor

Entries, (c) Library Subprograms, and (d) Public Programs.

B. Documentation of CTSS

The documentation which is presently available to describe the programs associated with

CTSS consists of (Ref. 3):

(1) The Programmers Guide

(2) Time-Sharing System Notes

(3) Computation Center and Project MAC Memos

(4) CTSS Bulletins.

Unfortunately, the Programmers Guide contains false and out-of-date information, and

consequently it is not adequate documentation of CTSS. The Bulletins, Memos, and Notes are of

some help but, since they are not indexed and are written at different levels of sophistication

and detail, something more is needed. Some Bulletins indicate that a new command or system

feature is available, but do not indicate how they are to be used. Other Bulletins indicate changes

or modifications to programs that were previously described but do not indicate the documentation

that has become superceded or outdated. The major criticism with the present documentation is

that many aspects of the system are not described at all.

On-line use of a computer is more versatile than the conventional use of a computer through

batch processing. With this on-line ability come many new ways of employing the computation

facility. As new features are developed, information on these new features must be communicated

to the users of the on-line facility. Thus, the problems of documentation associated with an

on-line facility are greatly increased and a new approach to this problem is required.

Adequate documentation should include a description of programs written by the users as

well as by the system's programming staff. Many users have either written programs which

are of general use or have developed techniques of on-line programming (such as useful RUNCOM

chains) which should be made known to all users. The following paragraphs from a report on

Project MAC and its users (Ref. 4) emphasize the need for More Adequate Communications

(MAC) between on-line users.

"In a broader sense, documentation refers not only to a description of CTSS
operations, but to communication among users about mutually useful programs.
Such communication is virtually non-existent at MAC, except by word of mouth
among members of related subgroups. The result is an enormous duplication
of effort. For example, an appreciable number of users have independently
written programs which produce "typewriter graphs" — curves printed by
appropriate spacing of teletype/typewriter characters. As another example,
various users have written mathematical service programs for various standard
computations. These duplications are especially striking because one of the
chief reasons for preferring a large time-shared computer to an ensemble of
smaller machines is that it permits the users to enjoy the fruits of one another's
labor. This potential advantage is not being realized at present.

"Examples of inadequate documentation can easily be multiplied. One math-
ematician who tried to use the system eventually gave up because he was
such a poor typist that he had to enter almost every line of program re-
peatedly. He said he would not consider using CTSS again until there was an
editing routine that permitted changes of single characters within a line. At
the very time of his complaint, Samuel's editing routine, which incorporates
this feature, was available and being widely used. Since then it has become
even more readily available as a system command, but even now this user would
have no way of finding this out, if he were to make another attempt. "

In fairness to the documenxation of CTSS, one should note that for a system which has been

designed and implemented in a relatively short time, CTSS is rather well documented. In fact,

numerous memos have been written which indicate the philosophy of time-sharing and describe

the design of the supervisor system (see Ref. 5). Since CTSS is- used h> man\ people who arc

eager to have new features implemented, it is understandable that the system's programming

staff has spent their efforts improving the system rather than completing the documentatioi ,

Nevertheless, the system would be improved if only the documentation ivere better, Another

point of importance is that CTSS has been designed as an experimental system, and thus docs

not have the requirements for complete documentation, although as a research project it should.

Now assume that a new reference manual was prepared which contained the documentation

of the system as it stands today. If this new manual were well written, well indexed, and

contained the documentation of all present programs, other problems in documentation would

still exist.

First of all, this new manual would have to be distributed to all users, novices as well as

experienced users of CTSS. The novice would find the amount of information overwhelming. He

would read the manual to learn enough information so that he could begin to use the system. \s

the novice spends more and more time at his on-line console, lie tends not to go back to the

reference manual unless he has a specific problem. Eventually, after much frustration, he

becomes like the experienced user- of today, who has read or heard of many features of the

system but is inclined to use only the techniques that he has used many times before. One often

avoids using a particular program because he never learned how. or forgot how to use it. or

doesn't have the documentation at hand. Hence, the conclusion to be drawn is that it is important

to have the right documentation available to the on-line user.

A second problem which influences the documentation is that program.-- arc modified or

improved in such a way that the original description becomes out of date. This requires that

memos be re-circulated to notify users of the changes made. Since not everyone will want the

same amount of detail, a single memo must contain different levels of description, or many

memos must be prepared for distribution to either programmers, supervisors, operators, or

administrative personnel.

Present procedures for distributing memos require that a programmer either request

documentation on a particular program, or that he be included on a distribution list for a par-

ticular category of documentation. These procedures fail in the following ways;

(1) The right people do not always get the documentation of interest. Either
they do not know that the documentation exists in order to request it, or
they are not on the right distribution list.

(2) The user does not keep an up-to-date index of the documents that he
receives and hence does not know what is available to him.

(3) The user cannot find the documents that were distributed and hence
must request additional copies. This creates more problems, since
additional copies may not be available, and consequently more may
have to he duplicated, forcing the user to wait before he can get the
desired information.

(4) Programs are changed or modified and new or amended documents are
not written and distributed.

(5) Even if amended documents were written, it would he difficult to know
who must be informed of the changes. That is, the distribution lists
must be kept up to date.

(6) There are inherent delays in providing the documentation of a program,
or of a modification of a program, which would prevent a user from ob-
taining the latest information available (e.g., delays which occur during
preparation of a memo or during its distribution).

A third problem in keeping up-to-date documentation arises when on-line consoles are

physically removed from the computation facility. For example, the users at Lincoln Laboratory

have little contact with the administrative staff and have no contact with other users. Any

system of documentation from a computation center to remote users is bound to be somewhat

unsatisfactory and at best is bound to impose delays caused by external delivery services.

The advancement of the art of time sharing makes it feasible for many programmers to

use a computer from an on-line console. It also becomes reasonable to have many on-line users

who are physically dispersed and whose only communication with the computer is through the

on-line consoles. The problems of documentation then become a major and not a minor problem.

Good written documentation is then more important, since there is no person with whom to

consult. Unless the classical system of documentation is perfect, a near impossibility, another

method of obtaining needed information is required. Also, the time that the documentation of

a program is needed is when a programmer wants to use a program, that is, while he is sitting

at his console. Unless his console is in his office, he will find that he does not have easy access

to the needed documentation. The problem of remoteness from the computation facility thus

increases the need for good documentation.

In order to meet the requirements of good program documentation, a system must be

developed to provide, in a better way, the right documentation when it is needed. Hence, a

standardized and more accessible documentation procedure for CTSS is needed. An on-line

documentation system offers the best means of providing information to CTSS users.

The on-line documentation must be integrated with the other forms of documentation and,

in particular, the comprehensive Programmer's Guide which describes all facets of CTSS.

Since the original Programmer's Guide (Ref. 1) was published, the facilities of CTSS have grown

tremendously, as one could expect. The Programmer's Guide, now in the process of being re-

written, is intended to serve as an introduction to all phases of on-line computation with CTSS

and as a reference manual for those who are already experienced users. The on-line documen-

tation system is intended to supplement the more comprehensive reference manual, providing

information on newly written programs as well as information on programs which have long been

in use. The on-line system also enables searching the whole body of available information. The

system may be useful in determining the nature of new programs just added to CTSS as well as

to remind a user of the usage or calling sequence of programs which are less widely employed.

IV. THE ON-LINE DOCUMENTATION SYSTEM

A. Objectives

In order to better provide information about the programs associated with the Compatible

Time-Sharing System, an on-line system for documenting computer programs has been developed.

The design of this on-line system attempts to satisfy the following objectives:

(1) Have up-to-date information available to the user on request, thus
eliminating the delays which occur in any memo distribution system.

(2) Have the ability to obtain specific information on request, e.g., the
author of a routine, as well as the complete documentation of a
routine.

(3) Give textual output in steps, i.e., printed according to information
item types (1) through (6) as described in Sec. II, indicating the
amount of printing that will result.

(1) Provide the facility to search through the library of programs to
determine the ones which satisfy particular conditions.

(s) Standardize the format of the program description by requiring thai
when a new program is added to the system all information of interest
is provided.

(6) Permit editorial control of the program documentation that is to he
included in the on-line system.

The on-line documentation system has been implemented as a CTS.S command with command

name INFO. Upon execution of this command, requests can be made to obtain answers to Hie

following types of questions:

(1) What doe.s the command STRACE do. i.e.. when could it be used'1

(2) How is the supervisor entry .F1I.HR used. i.e.. what is its calling
sequence'5

(3) What new programs have been added to the TSS library since
September 1st?

(4) Who is responsible for the command GPSS?

(5) What are the names of the command programs written by the STAFF
since August 1 st ">

The system has been designed as a general-purpose means of storing and retrieving textual

information about computer programs. The immediate objective is to provide documentation

of system commands, supervisor entries, library subprograms, and public programs. These

types of programs have been chosen because there is an urgent need for having this documentation

available on demand, i.e., on-line.

The information describing a program is divided into information items, Each item of

information is associated with an item name and is referred to as the item value of the as-

sociated item name. For example, the item value "WINETT" is associated with the item name

" \l THOR." The following items of information indicate what is required as documentation of

a computer program:

(1) Program NAME (N) — A single word.

(2) Program TYPE (T) - One of the following: COMMAND, ENTRY,
LIBRARY, or PUBLIC.

(3) DESCRIPTORS (D) - Key words used to classify the programs in
the information files.

(•]) PURPOSE (P) — A short abstract or sentence description indicating
the context in which a program might be used.

(S) USAGE (V) — The instructions of how to use the program, e.g., the
calling sequence.

(M Programming LANGUAGE (L) — The language in which the program
is written.

(7) REFERENCE (R) - A bibliography of where Tnore information about
the program may be obtained.

(8) AUTHOR (A) — The name of the person who is responsible for the
program.

(9) DATA (PA) - The date the information was last entered or modified.

Additional information items may also be defined, e.g. , program size, transfer vector, etc..

but the above items ire considered required to document any program.

B. System Usage

A model of this information system has been implemented as a CTSS command program

with command name INFO. The system may be initiated as a console command or may be

"chained to" from another program. If, when the INFO system is called, the NAME of a pro-

gram is given as a command parameter, the documentation on that program will be printed,

after which the system will call CHNCOM. This procedure allows other command programs

to have access to their documentation. For example, when no parameters are supplied with a

command which requires at least one parameter, the command should chain to the INFO command

with the command name as a parameter. This technique would provide a means of tying the

documentation of a command program to the command itself.

If only the command name INFO is typed, the system will respond

TYPE REQUEST, OR C. R. FOR INSTRUCTIONS..

whereupon a carriage return will initiate the request to describe the INFO command.

Alternatively, requests can be typed to the INFO system. There are three classes of re-

quests: (a) Retrieval requests to obtain information from the system, (b) Storage requests for

adding, changing, or deleting information from the system, and (c) System requests which

affect the operation of the system. The Retrieval requests - DESCRIBE (D), LIST (L), and

FIND (F) - are to be used by all CTSS users. The Storage requests - STORE (S), EDIT (E),

ALTER (A), and REMOVE (R) — are to be used by the people responsible for the information

stored within the system. This responsibility may be shared with special users as will be

discussed in Sec. VI. The System request — QUIT — is used to terminate communications

with the system, and the requests — END, TSSFIL, and USRFIL — are used for changing the

operation of the system.

Whenever the INFO system prints a comment followed by two periods, it is the user's turn

to type. After processing each request, the system types

OK. .

To obtain a description of a Storage or Retrieval request, the user types the request name only.

A request to the INFO system indicates three types of semantic information: (1) an imperative

request to the system, (2) a list of single information words, or (3) information items specified

by item names together with the item values associated with the item names. A request to the

system is assumed to be indicated by one of the first few words typed. Other words following

the request name may be item names which are added to a list of "information words" or may

specify the values of information items which are added to a list of pairs consisting of an item

name and its value. When either the word "IS" or "ARE" is encountered in a request, it is

assumed that the previous word is an item name and that the following words form the item

value. The input specifying the item value must be terminated by a comma (or the carriage

return at the end of the request) and may be followed by other item names and their values or

by item names alone. If the word "THEN" appears as an information word, the input scanned

so far is assumed to constitute a request. After the request is processed, the input following

the word "THEN" is scanned for the specification of another request. Thus the word "THEN"

indicates the termination of a request and allows multiple requests to be typed. Words other

than item names or item values or the word "THEN" may be typed but are ignored by the system.

Requests and item names may be abbreviated by their first letter (except the item name

DATE which is abbreviated DA). If an item value is specified more than once in an input request,

10

the value last specified takes precedence. Thus, the on-line user may i hange or corred the

specification of an item value by retyping the item name together with the item value in the

same input request.

To continue the typing of a request on another line, precede the carria) • return (('. U.) by

a dash (—). When in doubt of what to do, type a carriage return.

RETRIEVAL REQUESTS

1. The DESCRIBE (D) request:

DESCRIBE NAME IS name, i(l) ... i(n)

This request is used to obtain the documentation of a program whose name is known. The

input with this request gives the program name and the names of the desired items of information.

[f no item names are specified, the information on all items will be printed. 1 'or example,

DESCRIBE THE COMMAND WHOSE NAME IS l\l()

produces all the documentation associated with the INFO command, and

I) \ IS INFO, I'SAGE

prints just the item USAGE for the INFO program.

When more than five lines of text are to be printed, the INFO system informs the user of

the number of lines which follow. After realizing how much information will be printed, the

on-line user may terminate the request by pressing the CTSS interrupt or quit button.

If the interrupt button is pressed the user may type "CONTINUE (C)" to resume printing or

"RESTART (R)" to type another request. Printing will be resumed approximately ten lines

after the line at which printing was interrupted. (This is due to the fact that the C I'SS output

buffers are cleared on interrupt.) Since a number of lines are lost on interrupt, the process of

interrupting and continuing provides a means of skipping lines of documentation. I iifortunat ely,

this procedure gets very poor response from CTSS.

If the quit button is pressed, the on-line user may type another command or type the CTSS

command "START" to continue as described above. This procedure gets very much better

response from CTSS.

2. The LIST (L) request:

LIST TYPE IS type, i(l) . . . i(n)

This request is used to obtain a list of the names of all information items. a list of the values

of certain information items, or to list the names of all CTSS programs of a particular type.

The request may ask for the values of one or more of the following items to be listed:

ITEMS, AUTHORS, DESCRIPTORS,

LANGUAGES, TYPES, or NAMES

or may also request a list of all CTSS programs of a particular type by typing one or more of

the types

COMMAND ENTRY LIBRARY or PUBLIC

after the words: TYPE IS. The list of programs of a particular type are obtained directly

from CTSS and thus automatically provide the most relevant list of programs available.

! 1

A request to

LIST NAMES

causes a list of the programs of all types to be printed. A list of descriptors may be obtained

by typing

LIST THE DESCRIPTORS

or just L D

3. The FIND (F) request:

FIND i(l) IS v(l), . . . , i(n) IS v(n)

This request is used to perform a search for the program or programs which have par-

ticular information item values. The items to be matched are given by typing the item names

together with their item values. Acceptable items for searching are:

TYPE. DESCRIPTORS, AUTHOR, DATA, and LANGUAGE.

A date value must be given in the form — DATE IS mm/dd/yy where mm is a numerical month,

dd is a numerical day, and yy is a numerical year. All programs whose date is greater than

that given will be printed, i.e., the most recently documented programs. Descriptors are single

words typed in any order and separated by spaces or the word AND.

For example, to find the commands which were documented since September 1, 1964 and

have at least the descriptors UTILITY and EDITING type -

FIND TYPE IS COMMAND, DATE IS 9/01/64, DESCRIPTORS -

ARE UTILITY AND EDITING

or F T IS C, DA IS 9/01/64, D ARR UTILITY EDITING

(Note the use of the dash to continue the input request on the next line.)

When a search results in more than twenty matching items, the system asks whether the

user wants to continue the search. The user may then type Y ES or NO. For each twenty

more matching items, the user is given the option of continuing.

STORAGE REQUESTS

4. The STORE (S) request:

STORE NAME IS name, FILE IS file, i(l) IS v(l), -

. . . , i(n) IS v(n)

This request enables one to enter information about a new program into an information file.

This request requires that information values be provided for each required item in the form:

item name IS/ARE item value

The NAME of new information items may be defined by typing the new item name and its value.

When the INFO system prints an item name followed by two periods, the user is to type the

value of that item. Item names and item values of other items may be supplied following the

item value which was requested by typing a comma after each item value and thus anticipating

the required input and reducing on-line interaction.

12

Tf the word FILE is specified in the input specification, a file with primary name the same

as the program name (if specified) and secondary name INFO is read. This file is assumed to

contain item values for this program where each item value is preceded by a line giving the

item name prefixed by a period and beginning in column one. [f the primary name of this input

file is not the same as the program name, the file name may be specified by typing the item

FILE IS file name.

If a file name is specified and a program NAME is not specified, the NAM K of the program

may lie read from the input file. A program NAME is indicated in an input file by the presence

of two periods before the program NAME. An input file may specify the documentation of many

programs by preceding the documentation of each program with a line giving the program NAME

prefixed hv the two periods (e.g., . . INFO). The priming of the command documentation was

done from an input file (with name COMAND TNFO) of this type by typing

STORE FILE IS COMMAND

5. The EDIT (E) request:

EDIT NAME TS name .

This request re-creates a FCD file (as a line marked file) from the information in the system

for- use in making changes to information items using some CTSS editing procedure. The EDIT

request requires that the program NAME be specified. Each information item is preceded by

a line giving the item name prefixed by a period (e.g., .Ft FtPOSE), and consequently no line

of an item value should begin witli a period. The primary name of the tile created is the same

as the program name and the secondary name is INFO.

f,. The ALTER (A) request:

AFTER NAME IS name. i(l) IS v(l) i(n) IS v(n)

This request allows one to change item values in the information documenting a program

or to store additional information items. The ALTER request requires that the program name be

specified and is used Hke the STORE request. The ALTER request is different from the STORE

request in that it does not require that values for all information items lie specified. That is,

the user-system interaction is different.

7. The REMOVE (R) request:

REMOVE NAME IS name, D IS d, A IS a, I IS i

This request is used to delete an AUTHOR, DESCRIPTOR, or ITEM name from the appro-

priate list, or to delete the documentation of a program from an information file when a program

is deleted from CTSS. To REMOVE the documentation of a program, give the program NAM E.

To REMOVE an AUTHOR from the list of AUTHORS or a DESCRIPTOR from the list of DESCRIP-

TORS, specify the item value to be removed. To REMOVE an IT MM name from the list of

[TEMs, specify the ITEM name. Verification of each request to remove the documentation of

a program is required.

SYSTEM REQUESTS

8. The QUIT (QU) request:

This request causes the INFO system to call CHNCOM, and it may be used to terminate the

I i

INFO command or to chain to other commands.

9. The END request:

This request causes the INFO system to terminate through the standard COMIT termination

sequence. (The INFO command has been written in the COMIT language.) The amount of unused

free storage, i.e., the number of WORKSPACE registers, is printed. This request may not be

abbreviated.

10. The TSSFIL request:

This request causes the INFO files to be obtained from one of the CTSS system file di-

rectories and is issued before the INFO system is included as a CTSS command. This request

may not be abbreviated.

1 1. The USRFIL request:

This request causes the INFO files to be obtained from the user's file directory rather than

the system file directory. This request may be employed by a user to indicate that the doc-

umentation files are to be obtained from the user's file directory. In this way, a user may keep

documentation of his private programs. This request may not be abbreviated.

C. User-System Interaction

The INFO command responds to requests typed by the user by either performing the desired

request, printing a comment, or asking a question. When only the command name INFO is

typed by the user the system responds with

TYPE REQUEST, OR C.R. FOR INSTRUCTIONS..

whereupon the user may type a request or a carriage return for instructions of how to use the

INFO command. After completion of a request, the system responds with

OK. .

and the user may type another request. Whenever the system terminates a comment with two

periods, ". . ", it is the users turn to type next. The two periods can be interpreted either as

a final period or as a question mark.

The response from the INFO system may occur when it is interpreting a request or when

it is processing a particular request. The following responses from the INFO system may

occur:

1. On Input —

(a) IS A NEW INFORMATION ITEM, CORRECT IT OR TYPE

OK OR IGNORE. .

(b) IS A NEW DESCRIPTOR, CORRECT IT OR TYPE OK OR

IGNORE. .

(c) IS A NEW AUTHOR, CORRECT IT OR TYPE OK OR

IGNORE. .

The user may correct a misspelled word, type OK to indicate that the word should be accepted,

or type IGNORE to continue processing the request. In this way, the user is notified when he is

14

adding to the information for which a search can be i

(d) NO ROOM FOR NEW ITEM . PLEASE NOTIFY STAFF.

This comment is printed when too many new information items have been The system

presently permits thirty new information items.

(e) IS NOT A TYPE, CORRECT IT OR TYPE IGNORE..

(f) IS NOT A LANGUAGE VAi.l E, CORRECT IT OR TYPE

rC.NORE.

Only one of the set of pre-specified values for the informal ion items TYPE and LANGUAGE is

permitted, in order to simplify the storage of this information and to facilitate searching Note

that these information items can take on only a given set of values: whereas, new values for

other items may lie defined by the on-line user The se1 of pre-specified values may be changed

or enlarged by a trivial change to the INFO command program.

(g) IS NOT IN THE FORMAT FOR DATE, FORMAT Ml ST HI

MM/DD/YY. .

\ date must be given as MM/DD/Y1 where MAI is a numerical month, 1)1) is a numerical day,

and YY is a numerical year.

(h) REQUEST NAME MISSING. REQUESTS ARE- DESCRIBE.

LIST, FIND, STORE, EDIT, ALTER, and REMOVE. .

If a request name is not found among the information words and at least one item name together

with an item value is specified, it is assumed that the request name was misspelled or not

typed, and the on-line user is requested to specify a requesl name. Any information word

previously typed will have been ignored and must be retyped, but information values do not

have to be retyped.

(i) FILE _ _BEING READ.

(j) FILE BEING READ TO OBTAIN ITEMS FOR

PROGRAM.

These comments are printed when an input file is read to obtain the values of information items.

(k) FILE NAME NOT GIVEN, FILE IGNORED.

2. On D ESCRIRE -

(a) PROGRAM NAM E IS. .

The DESCRIRE request requires that the name of the program to be described be specified. The

user should type the program name and, if desired, the information items to be printed,

(b) NOT DOCUMENTED.

This comment is printed when the documentation of the program requested has not been stored,

(c) (_ . LIMES FOLLOW)

When more than five lines of text are to be printed, the INFO system informs the user of the

number of lines which follow.

(d) PROGRAM NOT IN INFO FILE , PLEASE NOTIFY STAFF.

1^

This comment indicates an error which might have been caused by a CTSS system failure.

3. On LIST -

(a) IS NOT AN ACCEPTABLE ITEM FOR LIST.

Only the following items may be listed: ITEMS, DESCRIPTORS, AUTHORS, LANGUAGES,

TYPES, and NAMES. If one requests that NAMES be LISTed, the system will obtain from the

CTSS supervisor the list of programs (commands and subprograms) for each TYPE. This list

will indicate the most recent status of the CTSS programs, since the list is obtained from the

supervisor itself.

(b) NO 'S TO LIST.

This comment is printed if no DESCRIPTORS or AUTHORS have been defined.

(c) IS NOT A DESCRIPTOR.

(d) IS NOT AN AUTHOR.

In preference to listing all AUTHORS or all DESCRIPTORS, a user may request to list the name

of a particular AUTHOR or DESCRIPTOR to check whether it has been defined. One of the above

comments is printed if the particular value requested has not been defined.

(e) IS NOT A COMMAND PROGRAM.

(f) IS NOT AN ENTRY PROGRAM.

(g) IS NOT A LIBRARY PROGRAM.

(h) IS NOT A PUBLIC PROGRAM.

One of the above comments may be printed if a particular program does not exist as one of the

programs associated with CTSS. This information is obtained from the CTSS supervisor and

has no relation to whether it has been documented or not.

4. On FIND -

(a) NO MATCHING ITEMS FOUND.

This comment is printed as the result of a search for items with specified item values.

(b) ITEMS FOUND.

(c) ITEMS FOUND SO FAR, DO YOU WANT TO CONTINUE. .

When a search results in more than twenty matching items, this comment is printed before the

twenty items found are listed. The user must type YES or NO.

5. On STORE -

(a) IS. .

Certain information items are required for the documentation of a program to be stored in the

INFO system. For each one of these, a comment of the above form will be printed whereupon

the user is expected to provide the requested item value. If the user terminates the value with

a comma, he may continue to specify other item values for this STORE request. For example,

after the system types —

TYPE IS . .

16

I he user may type

COMMAND, DESCRIPTOR [S UTILITY . \UTHOR IS STAFF

to continue specifying the item values for the store request.

(1)) IS ALREADY STORED, DO YOU WANT TO ALTEK

If an attempt is made to store the document at ion of a program thai lias alrearh been stored,

the on-line user has the option of ALTERing the documentation for that program with new

information.

6. On EDIT -

(a) PROGRAM NAME IS . .

A program name is required with the EDIT request.

(1)) NOT KOI MD.

This is a possible response from the EDIT request.

7. On ALTER -

(a) PROGRAM NAME IS . .

A program name is required with the ALTER request.

(b) NOT DOCUMENTED, DO YOU WANT TO STORK

If one attempts to modify the documentation of a program that has not been documented, he has

the option of storing the complete documentation for that program.

8. On REMO\ E

(a) NOT FOUND.

The response if a program is not documented, and hence cannot he deleted.

(b) IS NOT AN AUTHOR.

(c) ___ rS NOT A DESCRIPTOR.

(d) IS MOT AN OPTIONAL ITEM NAME.

One cannot type an AUTHOR or DESCRIPTOR in a request unless it is defined in the appropriate

list.

(e) IS BEING REMOVED FROM Till': FILE, OK..

Verification is required before the documentation of a program can be removed from the

information file.

D. The Data Base for the INFO System

In order for this INFO system to satisfy the objectives of providing on-line documental ion

of the programs associated with CTSS, the system must be primed with meaningful information.

This is no simple task. The files containing the documentation information must be made

available to the INFO system. Since the documentation consists of textual information, it must

be prepared for storing in the system either by the authors of the programs or by some other

knowledgeable person. In addition, once the documentation lias been broughl up to date, i.e..

IT

information stored on the present set of programs, it must be kept up to date.

Consider first the problem of priming the system with information on programs already

available for use with CTSS. These programs consist of system commands, supervisor entries,

library subprograms, and public programs. The system has already been primed with doc-

umentation of the 82 system commands in the concise format desirable for the on-line retrieval

system. The KD command, which permits input and context editing of a RCD file, was used to

produce a file (with name COMAND INFO) containing the documentation of the commands. This

file was then used in a STORE request to store the documentation on COMMANDS. Following

similar procedures, on-line documentation for the other types of programs must be provided.

It is suggested that this be done as the new reference manual is being prepared. This task

might be assigned to a system's librarian or to one of the staff consultants.

Now consider the problem of keeping the documentation information up to date. This entails

providing additional documentation when new programs are added to the system and providing

revisions to the documentation already stored when existing programs are modified. In an ideal

situation, documentation would be automatically obtained and no human supervision would be

required. Since the documentation of programs consists mostly of textual material, it must be

written by a knowledgeable person. On the other hand, an up-to-date list of the different types

of available programs can be automatically obtained by using the LIST request.

One of the objectives of the on-line system is to aid in providing the desired documentation.

The STORE request requires that certain information items be provided, and in this way an

attempt is made to standardize the documentation. Each time the documentation of a program is

stored or altered, the INFO system automatically supplies the information value to the information

item DATE. That is, the date the documentation is stored or altered is automatically stored

and the on-line user does not have to input its value. If each author of a program were to store

the documentation of his own programs, the INFO system could also provide the value to the

information item AUTHOR by obtaining this information from the CTSS supervisor (the super-

visor knows the name of a user along with his problem and programmer number).

This brings up the question of responsibility, i.e., who should be responsible for keeping

the INFO system up to date and accurate. The information files associated with the INFO com-

mand are to be stored with the system files (i.e., in the directory of M1416, common file 2)

but are now temporarily stored with the public files (COMFIL P is in the directory of M1416,

common file 4). This restricts the number of people who modify the information to those who

are assigned an M1416 problem number. Thus, the machinery which is presently built into

the CTSS supervisor is used to control who is permitted to alter the information files. This

does not require that a staff member' write the documentation of all programs. Any user who

writes a system program (COMMAND, ENTRY, LIBRARY, or PUBLIC program) may be asked

to provide an INFO file in the form appropriate for the STORE or ALTER request, and this

file can then be used by a privileged user (problem number of M1416) as input to the INFO

system.

The question of who has editorial control of the documentation, i.e., who has responsibility

for the INFO system, is still not answered. No simple answer is apparent. All that can be

said is that a system librarian who is responsible for all forms of documentation must be given

the responsibility of monitoring the on-line system.

The following procedure, which appears to be feasible, would help the system's librarian

keep up-to-date documentation on programs which are developed and continually modified by a

is

special user group. If INFO files are prepared bj the special user groups Fur the programs for

which they are responsible, these [NFO files could he obtained from the special user group's

file directory and used as input to the [NFO system. This procedure could he performed b\ a

special-purpose system program. This system program to update the documentation could he

run automatically at specific times during operations of CTRS. In this way, the user group

which develops a program is also given the responsibility of updating the documentation of the

program. All that is required is that an [NFO file be created and included in the user groups

file directory. This INFO file would he processed in a similar manner as REQUES T. l-'II.K's

are now processed. The special system [NFO updating program would have to know, for each

program, which user was permitted to update its associated documentation

The problem of keeping the on-line system up to date with information on new programs

will always be with us, as will all problems concerning documentation. It is hoped that the
existence of an on-line system will tend to centralize the effort. Even without altering the

problem of preparing documentation, an on-line system will help to make the documentation more

readily available to the on-line users.

V. DESIGN CONSIDERATIONS

A. General Approach

To insure that an on-line documentation system continues to be useful to the on-line users,

it is important to make sure that the information obtainable is correct and up to dale. One way

to achieve this objective is to obtain as much information as possible from the system directly

and automatically rather than to require that someone continually and manually update the in-

formation.

The list of system commands can be obtained from the command directory which is stored

in core-A. Commands are either core-A transfer, core-H transfer, or core-B executable-

programs (saved files with a secondary name of TSSDC). These latter types are stored in the

system file directory (comfil 2 of M1416) and a check that the files exist in the directory can be

made to verify that the command is in fact executable.

A list of the active supervisor entries can be made by examining the appropriate director)

in core-A. The list of public programs can be obtained by examining the public file directory

(comfil 4 of M1416, i.e., comfil P).

The subprograms which are available to be included in a user's program comprise a set

of library files. Originally there was only one library, the TSSLI13 file: but subsequently this

file was broken down into TSLIBt for general-purpose subprograms, TSLIB2 containing de-

bugging programs, and KLULIB containing subprograms for the ESL display. To determine the

programs contained within a library, a program can be written to read the program cards for

each subprogram within the library file. The names of the entries to the subprogram, the

transfer vectors or names of other programs which it calls, and the amount of core needed for

loading (both relocatable and common) can thus be obtained. This information can be obtained

by executing the command program PRBSS with a library file. Alternatively, the function per-

formed by the PRBSS program can be incorporated within the on-line documentation system.

A library file can also be used together with a special program to produce a cross-reference

table of the programs which are called by the entries in the library file. This information is

needed when a change is being made to a program and it is necessary to reflect the change back

19

to the programs which call this program. This information has been prepared manually by

J.Saltzer (Ref. 5) for the core-A subprograms which form the CTSS supervisor. The command

program SUBUSE, prepared by B. Wolman at Project MAC, automatically prepares a reference

table, of the type mentioned, by examining the program cards of subroutines included in a

library file. By use of this program, an up-to-date reference table can be produced with no

errors, which is unlikely when this job is done manually. The INFO system could be designed

to accept a request to initiate this program, thus centralizing the information retrieval tech-

niques.

Another way of insuring that up-to-date information is provided about a program is to

require that an entry be made in the information system before a program can be added to the

public file of programs or a new command added to the system. For example, the system

could check to insure that for each core-B command (file with secondary name TSSDC.) a file

exists with secondary name INFO. This could also be done for each public command in the

public file directory, i.e., for each saved file. This technique is not completely satisfactory,

but it indicates what could be done to coordinate the documentation of a program with the inclusion

of the program in the system.

The difficulty with the above scheme is that (l)the size of the system and public file dir-

ectories would be doubled by the inclusion of the INFO files, (2)there is no guarantee that the

textual information provided by an INFO file is meaningful, and (3)this technique can't be used

with the library subprograms which are combined into a single file, or for the core-A supervisor

entries for which no files exist. The main problem centers around the problem of how the

information is to be stored and how it is to be made accessible.

The INFO command is an information storage and retrieval system which has been de-

signed in the context of the Compatible Time-Sharing System, and thus certain design decisions

were based on the way auxiliary storage is handled within this environment. The general

problem of storage and retrieval has not been considered, only that part of the general problem

as it applies to the limited context of documenting the computer programs associated with CTSS.

For example, certain information items were considered to be required in the documentation of

a program, and this requirement was built into the STORE request. In a different context,

information items other than those of this information system might be considered as required

Also, particular features of the COMIT programming language are used to store the values of

the items whose set of possible values are known. That is, in the present implementation, the

information item TYPE is treated in a special way and can take on as values only COMMAND,

ENTRY, LIBRARY, and PUBLIC. The context in which the INFO system is to operate'has

become an inherent part of its implementation (i.e., of the program).

The design of a truly general-purpose information storage and retrieval system would re-

quire that before it is used in a particular context, one specifies to the system the form that

the information would take. For example, this specification could take the form of indicating

the names of the required information items and the format in which they are to be interpreted

and stored. A system to be used for bibliographic references might require the following

information items:

(1) Title

(2) Author

(3) Publisher

2 0

(4) Date of publication

(5) Type, i.e., book, journal, report, etc.

Optional information items might be:

(6) References

(7) Page numbers

(8) Persona] comments.

Once the specification of a system is made, it becomes a special-purpose system which

is to be used in a particular context. A general-purpose information storage and retrieval

system should be designed to operate in three modes. In the first mode, the specification of

the format of the information base is made. 'Phis is done once, when the characteristics of

the particular application are defined. The second mode is the storage mock1 where the information

is provided to the system. The third mode is the retrieval mode. The second and third modes

would both be available for operation during the use of the system. The procedures performed

during the storage mode would make use of the specification of the information base but would

not be dependent on any particular format of the information. Similarly, the types of retrieval

processes that could be performed would be independent of the particular data base on which

it was operating. A general-purpose information storage and retrieval system designed on these

principles could be used in many different applications.

B. System Features

The INFO system has been designed to accept new information for storage or changes to

information already stored according to information items. Verification by the on-line user is

required whenever an attempt is made to remove the documentation of a program. A file

containing information items for a given program may be created from the information stored

in the system and, after it has been edited, this file, or one prepared with the use of the t'TSS

input facility, may be read by the INFO system to store or alter the information.

The user of the system can also list the values of certain information items which, in turn,

may be useful in either the storage or retrieval process. Whenever a request results in a

printout of over five lines, the system notifies the user of the number of lines which follow.

The system can also perform a search for the program which satisfies particular conditions

or has specific values for particular items. If the user makes an unsound request, the system

balks and checks to see if the user really wants to make the request. If a search for programs

satisfying particular conditions finds more than twenty matches, the system asks whether the

user wants to continue the search.

The overall objective is to form a basis for obtaining textual information which describes

a set of programs. This system could be combined with other special-purpose programs,

sucli as a program which could automatically obtain the cross reference table of entries or

calls, similiar to that prepared by Saltzer and Wolman. A considerable amount of information

is obtained from the system itself, e.g., the list of active commands is obtained from the sys-

tem command directory and the list of supervisor entries is obtained from the supervisor itself.

C. Language Features

A central philosophy of the man-machine communication language is that if a user is very-

familiar with the language and knows how the system behaves, he may communicate with it

Z\

in a very concise manner to accomplish his objectives. On the other hand, the novice, who is

just learning the language may be very verbose and clumsy, but the language will lead him

along, asking him questions and telling him what to do at every step of the way. If the user

does not know what to do, he simply types a carriage return and the system will respond, telling

the user what to do next. If the user has some experience and knows the format of information

to be typed, he can be terse in his input statements.

The language used to communicate with the information system has been designed with the

following principles in mind:

(1) The input format is independent of the request to the system.

(2) The format is semantic, rather than syntactic, thus making it
simpler to learn, easier to understand, and more flexible in its
use. For example, to specify that an item X has the value Y one
may type the statement

THE VALUE OF ITEM X IS Y

rather than specifying just X and Y, where X is in one input field
position and Y is in another input field position. The INFO system
is permissive about the syntactic form of an input request, allowing
words to be typed which may be ignored.

(3) The order of specifying items is not fixed, since item names must be
supplied along with each information value.

(4) The system guides the user in steps indicating what to do. When
an on-line user is in doubt of what to do, he merely types a car-
riage return.

(5) The user can anticipate input if he knows what is required, thereby
reducing the on-line interaction.

(6) An experienced user can use abbreviations or eliminate redundant
words, and hence simplify the on-line language.

D. Storage Considerations

The organization or data structure of the information to be stored is dependent on the types

of retrieval to be performed. Trade-offs can be made between the ease of storing information

and the ease of retrieving the information. In the documentation system, there are two types

of information or data:

(1) Textual information which has no relation to other textual information
and is retrieved by specifying the name of the body of textual data.

(Z) Information which is cross related and on which various types of
processing or searching are performed.

Each type of data should be kept in files separate from the program which processes the data.

This storage organization allows the programs to be changed without affecting the data which it

processes. Since the types of processing that are performed on these two types of data are

different, the data structure should be different, and thus the information should be stored in

separate files.

The textual information consists of groups of sentences to which a program name is asso-

ciated. For each program name, there are generally more than ten lines of text. Since in the

retrieval process only these lines are desired, it is not necessary to have all the textual

information in core storage. Consequently, auxiliary mass storage in the form of random access

files on the disk is used. In the present implementation, the body of textual information is stored

.'.'.

in three files (secondary names FILEt, FILE2, and FILE3) according to an equal partitioning

of the set of first characters of a program name. If it is desirable to make a finer partition of

program names, the first two characters of a name may be used.

Each file consists of an integral number of tracks on the disk and, for efficiency of storage,

the information should be stored in such a way as to minimize the unused storage space on a

track. Assume that, on the average, each file contains one track which is only half used. The

more information stored in a file, the smaller is the percentage of wasted storage space. But,

if a file contains the textual information for more than one program, this file must be searched

linearly to obtain the text of a desired program. If more files are used, then, on the average,

the linear search for textual information is shortened, since each FILE would contain less in-

formation.

On the other hand, when the body of textual information is stored in many shorter files rather

than in fewer larger files, the percentage of wasted storage is increased and the available disk

storage space is used less efficiently. In addition, when more files are used, the CTSS super-

visor is burdened with keeping track of the names of each file and its location on the disk. Thus,

the trade-offs between efficiency of storage and ease of retrieval should help to determine the

optimum number of files to use.

The organization of the search information depends on the types of retrieval to be performed.

If the search data are cross related in such a way that various associations can be made between

the items of data, it is desirable to store each item of data only once and use pointers to indicate

the relations among the data. List structure techniques, where one list can be a sublist of many

lists, can be useful in implementing these relations. Other advantages of list structures arc:

(1) The number of words or entries with which the program has i
does not have to be predicted in advance, thus eliminating the nec-
essity of reserving fixed length blocks of storage.

(2) Storage space once used can be put back on a free storage list when it
is no longer needed, thus making it available again when it is needed.

(3) The program is relieved of the problem of allocating a fixed storage
location for the data, since the list of available space links together
the usable storage space.

The search information in the INFO system consists of the information items — TYPE,

AUTHOR, DATA, LANGUAGE, and DESCRIPTOR which are associated with a program NAM E.

This search information is stored in core by using the list or string structure of the COMIT

language (Sec. VI). The data for a given program are stored as two constituents plus one

constituent for each DESCRIPTOR. The first constituent consists of the program NAM E with

the values for the information item program TYPE as subscript values to the logical subscript

TYPE. The second constituent consists of an AUTHOR value with the DATE documented as its
numerical subscript and the LANGUAGE value as the subscript value to the logical subscript

LANG. Each DESCRIPTOR is stored as a single constituent following these first two, and the

data for each program are separated by a constituent with the special symbol *X. The data

are stored on 47 SHELVES (linear strings in COMIT) corresponding to the 47 different possible

first characters of a program name. A finer or coarser partition could be made by a simple

change in the program. The more shelves that are used, the easier it is to obtain the data of

any given program since, on the average, the amount of data on any given shelf is reduced.

In the present implementation of the INFO system, the search data are stored in one file

(with second name DATA), and when these data are loaded into core they arc stored on the

2^

| 3-3S-6425|

STORAGE *= = SHELF/. 80 + —DATA + -FILE1 *
- = SHELF/. 81 + —DATA + -F ILE1 *
*+ = SHELF/. 82 + —DATA + -F ILE1 *

= SHELF/. 83 + — DATA + -F "ILE1 *
*1 = SHELF/. 84 + — DATA + -F TLE1 *
*2 = SHELF/. 85 + — DATA + -F ILE1 *
"3 = SHELF/. 86 + — DATA + -F :ILE1 *
A = SHELF/. 87 + — DATA + -F :ILE1 *
B = SHELF/. 88 + — DATA + -F "ILE1 *
C = SHELF/. 89 + — DATA + -F :ILE1 *
D = SHELF/. 90 + — DATA + -F :ILE1 *
E = SHELF/. 91 + — DATA + -1 :ILE1 *
F = SHELF/. 92 + —DATA + -1 :ILE1 *
G = SHELF/. 93 + — DATA + -1 :ILE1 *
H = SHELF/. 94 + — DATA + -1 -ILE1 *

*) = SHELF/. 95 + — DATA + -f -ILE2 *
*_ = SHELF/. 96 + —DATA + -1 :ILE2 *
*s = SHELF/. 97 + — DATA + -1 :ILE2 *
** = SHELF/. 98 + — DATA + -1 :ILE2 *
*4 = SHELF/. 99 + — DATA + -1 :ILE2 *
*5 = SHELF/. 100 + —DATA + - :ILE2 *
*6 = SHELF/. 101 + —DATA + -1 :ILE2 *
1 = SHELF/. 102 + — DATA + - :ILE2 *
J = SHELF/. 103 + — DATA + - :ILE2 *
K = SHELF/. 104 + — DATA + - :ILE2 *
L = SHELF/. 105 + —DATA + - -ILE2 *
M = SHELF/. 106 + — DATA + - -ILE2 *
N = SHELF/. 107 + —DATA + - :ILE2 *
0 = SHELF/. 108 + —DATA + - :ILE2 *
P = SHELF/. 109 + —DATA + - :ILE2 *
V = SHELF/. 110 + —DATA + - :ILE3 *
t = SHELF/. Ill + —DATA + - :ILE3 *

*(= SHELF/. 112 + — DATA + - :ILE3 *
*7 = SHELF/. 113 + —DATA + - :ILE3 *
•8 = SHELF/. 114 + — DATA + - :ILE3 *
'9 = SHELF/. 115 + — DATA + - =ILE3 *
•0 = SHELF/. 116 + — DATA + - =ILE3 *
Q = SHELF/. 117 + —DATA + - :ILE3 *
R = SHELF/. 118 + — DATA + - :ILE3 *
S = SHELF/. 119 + — DATA + - = ILE3 *
T = SHELF/. 120 + — DATA + - -ILE3 *
U = SHELF/. 121 + — DATA + - =ILE3 *
V = SHELF/. 122 + — DATA + - :ILE3 *
w = SHELF/. 123 + — DATA + - =ILE3 *
X = SHELF/. 124 + — DATA + - FILE3 *
Y = SHELF/. 125 + — DATA + - =ILE3 *
Z = SHELF/. 126 + — DATA + - FILE3 *

Fig. 1. File Specification LIST.

24

47 shelves. If more DATA files were used, by partitioning the search data in a different way,

Hie amount of data on a given shelf from a given DATA file would be reduced. If all the DATA

did not have to be searched, this would result in a reduction in the amount of data that must lie

read and loaded into core storage. Since quite often it is necessary to search all the data, no

savings would be obtained in this case. The amount of search data that can lie stored in core at

one time is limited and, as this amount grows, the system is eventually forced to split the

data into more than one DATA file.

In the present system, the search data use approximately fifteen words per entry. The

system has 10.000 words of available free storage, which is used to store the [NFO DATA file

and to process the textual information for a single program. About 1000 words of free storage

should be reserved for processing requests and textual information of a single program. This

leaves room for searcli data for about 600 programs. When more space is required, the INFO

DATA file can be partitioned into multiple sections. The present partitioning (if the information

for storing in files is illustrated in the File Specification List (a COMIT list rule) shown in

Fig.1.

E. Console Printing

Information on the documentation of a program is conveyed to a user through an on-line

console. The primary types of consoles presently in use witli CTSS are (1) the Model 35

Teletype. (2) the [BM 1050 Selectric, and (3) the ESL display. Each type of console has a

different set of characters associated with it, and sends and receives different character

signals. The CTSS supervisor performs all the code conversions for transmitting and receiving

characters between a remote console and a program within the computer. The CTSS supervisor,

by rules of convention, maps each character signal received into a BCD code for represent;!) ion

within the computer and maps codes generated by a program into signals for transmission to a

console for printing.

Characters are represented in the computer in one of two modes; in the "normal" mode,

i. e., as a 6-bit code, or in the "full" mode, i.e., as a 12-bit code. In the 12-bit mode, the

high-order 6-bits are referred to as logical case bits. Some characters can only be represented

in the "full" (12-bit) mode, and others may also be represented in the "normal" (6-bit) mode.

These mappings between signals and codes are peformed by the supervisor in one of the two

modes which is set by program control.

If the mapping is performed in the "normal" mode, and a character whicli can only be re-

presented in the "full" mode is typed, the character may be converted to the corresponding

"normal" mode character by deleting the case bits, or it may be ignored. The characters which

are convertible depend on the console being used and are usually restricted to the set of lower

case letters (represented in the 12-bit mode only) which ace converted to upper case letters

(represented in the 6-bit mode). Thus, when operating in the "normal" mode a user may type

a character which is ignored, or he may type a character which gets converted to a different

character. If an attempt is made to print a character which does not exist on a particular-

console, the character is either converted to a printable character or is ignored.

The INFO system has been implemented for use in the "normal" mode, and hence only the

"normal" BCD set of characters may be printed (although some of the characters in the "full"

set may be typed and converted into characters of the "normal" BCD set). Consequently, textual

25

descriptions of a program are printed in all upper case letters regardless of the console being

used. This makes reading and comprehending of the information slightly more difficult.

If the INFO system were designed to operate in the "full" mode, both upper and lower case

letters could be printed on those consoles which have them. For those consoles which do not

have lower case letters, the CTSS supervisor would map them into upper case letters. The

problem with this mode of operation is that twice as much storage space would be required to

store the textual information; consequently, the average search time for the documentation

of a program would be doubled.

It is important to be able to program a time-shared computer for on-line interaction in

such a way that it is not dependent on the console being used. Each character should be given

a unique representation within the computer, regardless of the console being used. In this way,

programs could be written with the assumption that the characters output to a console for

printing will be the same, regardless of console. This is not the case in the present design of

the CTSS adapter module. In addition, it is useful to have two modes of operation, one in which

characters output are represented uniquely (the "full" set) and a second in which some characters

are converted to "normal" set characters.

F. System Response

A user sitting at his console makes a request to the system and desires the system to

respond immediately, i.e., within the human reaction time, which is of the order of 2/10 of a

second. The system's response is governed by the amount of time required to process a user's

request and the amount of time which is necessary for the system to communicate a complete

response to the user.

The real time required to process a request depends on the complexity of the request,

i.e., the amount of processing that has to be done, and the scheduling algorithm which determines

what portion of real time is allotted to a particular user for his computation. A user does not

have control over the algorithm used to determine his priority of service; hence, he can only

attempt to minimize his demand for computation which is based on the complexity of processing

that is required. It will be indicated that the amount of time required for a particular process

is based on the structure of the data or information stored.

The time required for the system to communicate with a user depends on the nature of the

on-line console. The output from an on-line console may either be printed (by a typewriter or

a plotter), displayed (as lights or as a picture), or punched (on punched paper tape or on punched

cards). The time required for each type of output is different, and this correspondingly influences

the information system's response to the on-line user. In general, the user does not consider

that the system has responded until the output is completed and it is the user's turn to act. Thus,

if a user makes a request requiring that ten lines of output be printed, he waits until all ten lines

have been printed before he begins to read the lines to complete the system-user portion of the

communications cycle. The time required for a page of text to be displayed on a viewing device

is at least an order of magnitude faster than the time it takes for the page to be printed on a

typewriter. Consequently, in discussing a system response to a user's request, one should

keep in mind the response time of a particular on-line console.

The typewriter console used with the present CTSS system imposes a considerable delay

when more than ten lines of output are produced during one man-machine cycle. Because

26

of this fact, it is important that the on-line user have the ability to request from the system only
the information which he wants to have, without producing additional unwanted information which
consequently increases the response time of the system and decreases the percentage of useful
information. Even a slight difference in console communication speed is noticeable to the on-
line user. Users find the IBM 1050 console preferable to the teletype console primarily because

of the former's faster typing speed. It appears that this is more important than the difference
in console key layout, since a user can easily adapt to different key positions.

If display devices for textual information were more accessible, this consideration would

not be so crucial to the user-system response. A page of textual information can be displayed

much faster than it can be typed, tremendously improving the communications between the

system and the on-line user. Several techniques are suggested for displaying continuous pages

of text.

Consider that a page is made up of a fixed number of lines, say twenty, depending on the
resolution of the display device. Successive lines are displayed on a page as they are generated,

until the page is full. A full page may be indicated either by a light or by a marker displayed
at the bottom of the page. When the user has viewed the page, he might push a button, flick
a switch, type a carriage return, or make an indication with a light pen to view the following
page.

Alternatively, as one page becomes filled, the top few lines could be made to disappear and
the rest of the page moved up so that additional lines could be displayed on the bottom. The
amount of the page that is moved up could be controlled by a continuous knob which the user
could turn as if he were rolling up a scroll. With this technique, the user always has displayed

in front of him a portion of a previous page, i.e., a number of lines preceding the last line

displayed. The importance of many of these considerations to the on-line operation of a computer
should influence the design of future time-shared computers.

VI. THE PROGRAMMING LANGUAGE

A. The COMIT Language

The INFO command has been written in the COMIT programming language (Ref. 6)^hich
has recently been adapted for use with CTSS. COMIT was chosen because it is well suited for

string manipulation of textual material. It uses a linked string structure for storage of data;
hence, no limit is imposed on the length of the English words or the nature of the text. A COMIT

program is easy to modify during the trial and error procedures of developing a suitable

communication language between man and machine, i.e., between the user and the on-line program.

The built-in string manipulation and searching features of COMIT permit easy experimentation

of processing algorithms, for example, in defining a new search routine. The version of COMIT

used has some of the new COMIT II features, in particular, the ability to execute a binary sub-
routine (assembled in FAP or MAD) upon transfer from the "go-to" of a COMIT rule.

The data which are manipulated or processed by a COMIT program consist of constituents
to which may be associated one numerical subscript and any number of logical subscripts which
may take on up to 36 logical values. A constituent is a concatenation of any number of BCD
characters; whereas, logical subscripts and subscript values are a concatenation of up to 12

BCD characters. Constituents are connected, through the use of pointers, in a linear string.

There may be 128 strings of constituents which are referred to as the WORKSPACE and the
127 SHELVES.

27

3-28-6426

BINARY
SUBPROGRAM "

"
RULES TABLES INTERPRETER

including
WORKSPACE
and SHELVES

ENTRY
EXIT
REFERENCE
TABLE RULES TABLES

t
BINARY 1 '
SUBROUT NE

Fig. 2. Paths of control between binary subprograms and COMIT routines.

PROG1

RETURN

RULES

|3-28-6427|

SXA RETURN, 4

TSX $.COMIT, 4

TXH RULES

TXH RULENO

AXT **, 4

TRA 1,4

PZE TABLES

TABLES

Fig. 3. Form of compiled COMIT program.

28

A COMIT program consists of a set of rules which are executed interpretively. A rule
consists of the following: a rule name and optional subrule names; a left-half for matching
with the constituents in the WORKSPACE; a right-half for specifying the manipulation of

constituents found in the left-half; a routing for indicating operations to he performed with the
WORKSPACE constituents, with the SHELVES, or with the input/output devices; and a go-to to
specify which rule is to be interpreted next. A go-to may specify the execution of a binary
subroutine rather than a COMIT rule.

The running of a COMIT program consists of compiling the rules into a compact coded form
and producing reference tables of rule names, subrule names, subscript names, and subscript

values. The compiled program is then interpreted with reference to the associated tables and
with a possible transfer to binary subroutines compiled by the FAP or MAD translator. In the

present version of COMIT, the binary subroutines must be loaded into core together with the

COMIT compiler and interpreter. At the time of execution, the core space used by the compiler
is available as free storage for inclusion in the WORKSPACE.

Improvements in the organization of the COMIT system are being made which will make
COMIT more usable as a programming language. For example, the present version of COMIT
requires that all the available core storage be assigned to a COMIT program, whether or

not all the storage is needed. The COMIT system is being modified so that only the portion of
storage which is required at any given moment is assigned to the program. Thus, the amount

of storage assigned can change dynamically as the requirements of a running program vary.
In particular, the amount of storage needed for the INFO system multiplies with an increase in
search data. The amount of core storage presently required for the INFO system is about

?.0,000 registers; thus, with the modification to the COMIT system, a two-thirds savings would
be obtained. Consequently, the amount of time required to load and swap the command would

be reduced. When this improvement is made, the INFO system can be recompiled to take
advantage of the savings.

To facilitate the use of COMIT with programs compiled by other translators, and in par-
ticular for use in CTSS, the following modification to the COMIT system is proposed.

In order to enable binary subroutines to use a subroutine written in COMIT. the COMIT
compiler should write a binary file containing the coded COMIT rules and its associated tables
in the form of relocatable binary card images preceded by an entry sequence. The COMIT

interpreter would be split from the compiler and added to the CTSS BSS library file. When the

binary routines are loaded into core with a BSS loader (one of the standard CTSS LOAD com-

mands) the compiled COMIT program is also loaded together with the Entry Exit Reference
Table (a FAP program through which COMIT calls binary subroutines) and the COMIT interpreter

(obtained from the library). Figure 2 indicates the paths of control between COMIT routines
and other binary subprograms which may be loaded into core at the same time.

The COMIT interpreter contains all the machinery for interpreting rules, manipulating
the WORKSPACE and SHELVES, and allocating storage from its storage list. When a routine
calls a COMIT subroutine, the "entry sequence" stores index register four in order to return
to the calling program and transfers to the COMIT interpreter with, as parameters, the
beginning location of the rules, and the number of the rule which is to be interpreted first (the

rules are assigned sequential numbers at compilation time).
The compiled COMIT program together with the entry sequence might take the form as

shown in Fig. 3, where . COMIT is the entry to the COMIT interpreter.

29

Note that the location of the TABLES is given indirectly from RULES.

This scheme can easily be incorporated with the changes now being made to the COMIT

system. Besides the modifications already indicated, the COMIT language must be adapted to

permit the specification of an entry point at a particular COMIT rule, and for each entry the

compiler must generate an entry sequence with an appropriate value for the parameter FtULENO.

If no entry is specified, the compiler must generate an entry sequence with RULENO set to the

first rule of the program, the return set to COMEND (the standard procedure for terminating

a COMIT program), and with the initial instruction for the storing of the return (index 4)

eliminated. Also, the COMIT interpreter must be modified to return to the calling subroutine

when an END rule is encountered.

The procedure outlined above is not recursive; once one COMIT routine is entered it can-

not be entered again until it is completed, i.e., it falls to the END rule. It may call a binary

routine or another COMIT routine, but these other routines cannot call the original COMIT rou-

tine. It does enable large COMIT programs to be written in pieces and permits the features of

COMIT to be used together with the features of other languages.

B. Use of COMIT Features

Certain features of COMIT have been most appropriate for programming the INFO system.

These are:

(t) The automatic handling of available core storage space by means
of a free storage list.

(2) The automatic storing, via string pointers, of any number of char-
acters as a constituent, i.e., for a single word or for the complete
textual description of an information item.

(3) The list structuring of the SHELVES which is used for partitioning
the data alphabetically and for facilitating access or addressing of
portions of the data.

(4) The left-half searching of the data for information items with matching
DESCRIPTORS, TYPE, LANGUAGE, and AUTHOR, or for a DATE
(stored as a numerical subscript) which is greater than a given value.

(5) The right-half specification of output format for printing on a console
or for storing data in a file.

(6) The simple input/output routing conventions for reading lines typed on
a console or for printing lines on the console.

VII. ADDITIONAL MODIFICATIONS

The design of the INFO system has progressed through many stages of modification. In an

early stage of the design, the request language was awkward and required a fixed and stylized

format. Experience in an on-line environment led to improvements in the request language

until the present form appeared satisfactory. In the present system, requests can be typed to the

INFO system or, alternatively, the request to describe the documentation of a specified program

can be initiated by specifying the program NAME as a command parameter when the INFO

command is called. A further modification to the system would permit all requests to be spec-

ified as command parameters. Thus, one would be able to resume the INFO command and

specify a request in one line of type. For example

INFO D NAME IS TYPSET, USAGE AND AUTHOR

to initiate a describe request. The present design of the CTSS supervisor limits the number of

command parameters to twenty, and each parameter must be six characters or less. There

JO

would be no problem specifying a program NAME since a name is at most six characters, but

an AUTHOR or DESCRIPTOR might be more than six characters and, hence, could not be given

as a command parameter. Also, there would be no problem specifying requests or item names,

since these can he abbreviated. In a future design of a time-sharing system on a different

computer, these limitations can be eliminated.

As was discussed in an earlier section, it would be useful to define sub and super categories

of descriptors. The implementation of a hierarchy of descriptors could be incorporated into

the present descriptor list by tagging each descriptor with a level indicator. A modification

could be made to the LIST request so that a request to LIST the DESCRIPTORS would give only

the descriptors which are in the subcategory of a specified descriptor. Further study could be

made to determine a good way to define descriptor categories.

The classification of programs has been done superficially in the SHARE index of distributed

programs (Ref. 7), but these are not completely satisfactory. Broad categories such as arith-

metic, input/output, code conversion, etc., are only of limited use. More specialized categories

are needed and other associations must be made among programs which can be used to help

locate or pick out a program satisfying a particular need.

The problem of determining the programs which are of interest cannot be solved by category

retrieval alone. More sophisticated techniques are needed. For example, a dictionary of

synonyms and antonyms might be useful for expanding the descriptor language and adapting it to

different contexts. A dictionary of related words could be used to define additional relations

among programs. If a dictionary entry related the descriptors INPUT and EDIT, a request for

documentation with descriptor EDIT would also provide the information which had the descriptor

INPUT. Techniques for analyzing English sentences might be useful in determining the nature

of a request and providing the necessary semantic information. More research is needed to

devise techniques of category retrieval.

As a future modification to the INFO system, the portion of the program which is concerned

with the STORAGE requests could be separated from that portion which is concerned with the

RETRIEVAL requests. As a result, the size of each portion of the program would be reduced.

More core storage would thus be available for search data during retrieval processing. Or,

alternatively, when the size of the retrieval program is reduced, the program load and swap

time are decreased, resulting in an improvement in system response. The present model of

on-line documentation system was implemented as a single system to make use of common

processing procedures and to coordinate the programming effort.

The allocation of work to develop a programming system is divided among (a) the writing

of the source program, (b) the compiler or translator, and (c) the functions performed by a

supervisor or monitor system. In the design of the present INFO system, the on-line com-

munication language was specified in the source program; the COMIT compiler was used to

handle storage allocation and data structure; and the CTSS supervisor controlled message com-

munications between the program and the on-line users, and the storage of information on

disk files. Each of these features might be better implemented by a redesign of the system, as

is true when developing new programming techniques.

VIII. SUMMARY

The on-line documentation system, as implemented, serves as a model fur demonstrating

the usefulness of an on-line documentation system and for designing the suitable language for

n

communicating with the system. The system indicates some useful tools for better documentation

of computer programs in an on-line environment. It is hoped that through use of this system,

insight into the area of program documentation can be obtained.

On-line users of a computation facility demand more up-to-date documentation of the

available programs, and an attempt to satisfy their demand should be made. Also, the problem

of communication is greatly increased when users of the computation facility are remote from

the computer and the administrative staff. As the computer becomes more like a utility,

adequate communications of all types and in all forms must be provided.

REFERENCES

1. F. J. Corbato, ef a]., The Compatible Time-Shoring System: A Programmer's Guide
(M. I. T. Press, Cambridge, Massachusetts, 1963).

2. M. M. Jones, E.C. Van Horn, and J.M. Winett, "A System for Storing and Retrieving
Information about Computer Programs,' Course 6.543 Seminar Paper, M. I.T., Cambridge,
Massachusetts (16 December 1963).

3. Computation Center Memoranda, Project MAC Memoranda, Time-Sharing Technical
Notes, CTSS Bulletins, and Programming Staff Notes.

4. U. Neisser, "MAC and its Users," Project MAC Memorandum MAC-M-185, M. I. T.,
Cambridge, Massachusetts (29 September 1964).

5. J. H. Saltzer, "CTSS Technical Notes," Project MAC Technical Report MAC-TR-16,
M. I.T., Cambridge, Massachusetts (1965).

6. V. Yngve, COMIT Programmer's Reference Manual (M. I.T. Press, Cambridge,
Massachusetts, 1961).

7. SHARE Index of Distributed Programs, M. I.T. Computation Center.

32

APPENDIX A

PRINTING FROM A SESSION WITH THE ON-LINE INFO SYSTEM

(Words in lower case were typed by an on-line user.)
(Words in upper case were typed by the INFO system.)
(This session with the INFO system was on 1/07/65.)

resume info
W 403.6
TYPE REQUEST, OH CH. KOI! INSTRUCTIONS. .

list the items
REQUIRED ITEMS ARE - NAME, TYPE, DESCRIPTORS, DATA. AUTHOR, LANGUAGE,
PURPOSE, USAGE, AND REFERENCE.
OPTIONAL ITEMS ARE - SIZE, AND TV.
OK. .

list authors and then list discriptors
AUTHORS ARE - .STAFF CAMPBELL CORBATO
MINSKY ROSS WINETT YNGVE

OK. .

DAGGETT POUZIN JONES

DESCRIPTORS ARE-. BOOLEAN COMMANDS COMPILER CONVERSION CONSOLE
DEBUG DOCUMENTATION EDITING ERRORS EXECUTION EXITS FILE FMS
DEBUG DOCUMENTATION EDITING ERRORS EXECUTION EXITS FILE HARDU \RE
I/O LOADER LOG MISC. PROGRAM READING SIMULATION STATES
SUPERVISOR TAPE TEST TIMER TRANSLATOR UTILITY WRITING
OK. .

list the programs whose type is command

SYSTEM COMMANDS

LOGOUT LOGIN ENDLOG IN ITT EDIT START
OCTPAT OCTTRA LOAD NCLOAD V1 .< >A 11 l.i >ADGO

PM STOPAT TRA PATCH FAPDBG STRACE
I.ISTF PRINTF FILE TFILE SAVE RESTOR

R MAD MADTRN CHMODE DELETE RENAMK
SPLIT SD SP COPY UPDATE COM FI1 .

-\i:n COM IT LISP ED SNOBOl. PRBSS
EXTBSS UPDBSS RUNCOM SDUMP GENC<)M LDABS

MEMO MODIFY DITTO REMARK DYNAMO RQUEST
AIK'IIIV BEFAP CRUNCH LOG BIi 'l 11 STRESS

COGO TYPSET RUNOFF CTEST1 CTEST2 (TEST 5
CTEST5 CTEST6 CTEST7 CTEST8 CTEST9 CTEST4
OCTLK USE FAP R ESUME COMBIN <; i >ss
PRBIN OIM PRINT MADBUC

OK.

list type is entry

SUPERVISOR ENTRIES

WRFLX
. ASIGN
. FSTAT
INSTRT
DEAD
DEFERR
SAVBRK
SETLOC
DSCOPE
SELECT
FORBID
SNDI.IN

OK. .

WRFLXA
.APEND
.DLETE
INPENP
DORMNT
AKNOLG
GETBRK
GETLOC
GETMON
CHECK
ATTCON
SNDLINA

RDFLXA
.RELRW
.RENAM
GETMEM
FNRTN
TSSFIL
SETCLC
COMFIL
GETIM i:
MONSCD
RED LIN
SLAVE

. W RIT E

. SEEK

.RESET
GETCOM
NEXCOM
USRFIL
GETCLC
SIM MON
LOGINA
M ON INF
RELEAS

. DIME

. FILE

.UPDAT
SETMEM
GETILC
S I'M II L
GETCLS
SETUSR
CLOGON
PCTSS
ALLOW

. I <)A I i

.ENDRD

. F II.ni;
(LFTM)
TRA1. !
SETBCD
SETCLS
.ERASE
CLOCOF
RDM
SETh

.READK

.CLEAR

.GTFLG
(EFTM)
RSTIM E
SETBRK
CHNCOM
EREAD
SLEEP
WRMESS
SE 112

S3

desc n is ed, da pu
DATE IS- 1/14/65
PURPOSE IS - FOR INPUTING OR EDITING 14 WORD BCD CARD IMAGE FILES
USING CONTEXT EDITING.

OK. .

find des is utility, a is staff
20 ITEMS FOUND SO FAR. DO YOU WANT TO CONTINUE. .
yes

ARCHIV, BLODI, CTEST7, CTEST6, CTEST5, CTEST1, COPY, COMFIL, COMBIN,
CIIMODE, DELETE, EXTBSS, EDIT, FILE, GENCOM, INPUT, LISTF, LOG,
PRBIN, PRBSS,

32 ITEMS FOUND.

PRINT, PRINTF, R, RQUEST, REMARK, RUNCOM, RESUME, RESTOR,
SPLIT, SAVE, UPDBSS, UPDATE,

OK. .

describe name is prbss, usage
USAGE IS - (6 LINES FOLLOW)
PRBSS 'A' 'B'
LIBRARY FILE 'A' BSS IS READ AND A SUMMARY OF ALL BSS PROGRAMS
BEGINNING WITH THE PROGRAM WITH ENTRY NAME 'B' IS PRODUCED.
IF 'B' IS OMITTED THE SUMMARY BEGINS AT THE BEGINNING.

OK. .

f 1 is mad
5 ITEMS FOUND.

ED, MADBUG, PRBIN, PRBSS, PRINT,

OK. .

f date is 1/01/65
20 ITEMS FOUND SO FAR. DO YOU WANT TO CONTINUE. .
yes

AED, ARCHIV, BLODI, BEFAP, CTEST9, CTEST8, CTEST7, CTEST6,
CTEST5, CTEST4, CTEST3, CTEST2, CTEST1, COPY, COMIT,
COMFIL, COMBIN, CHMODE, COCO, CRUNCH,

40 ITEMS FOUND SO FAR. DO YOU WANT TO CONTINUE. .
yes

DITTO, DELETE, DYNAMO, ED, ENDLOG, EXTBSS, EDIT, FILE,
FAPDBG, FAP, GPSS, GENCOM, INPUT, INFO, LOGOUT, LOGIN,
LOADGO, LISTF, LISP, LDABS,

60 ITEMS FOUND SO FAR. DO YOU WANT TO CONTINUE. .
yes

LOG, LOAD, MADBUG, MADTRN, MAD, NCLOAD, OPL, OCTTRA,
OCTPAT, OCTLK, PRBIN, PRBSS, PRINT, PRINTF, PATCH, PM,
R, RQUEST, REMARK, RUNCOM,

78 ITEMS FOUND.

RENAME, RESUME, RESTOR, STRESS, STOPAT, SDUMP, SNOBOL,
SP, SD, SPLIT, SAVE, START, TFILE, TRA, UPDBSS, UPDATE,
USE, VLOAD,

OK. .

d n is ditto, r
REFERENCE IS-GUIDE PP. 82-86
SYSTEM NOTES NUMBER 3
BULLETIN 5 AND 32.

OK. .

d n is tvpset
TYPSET NOT DOCUMENTED.
OK. .

34

store file is tvpset
FILE TYPSET INFO BEING READ.

FILE TYPSET INFO BEING HEAD TO OBTAIN ITEMS FOR TYPSET PROGRAM.
SALTZER IS A NEW AUTHOR. CORRECT IT OR TYPE OK OR IGNORE..
ok

REFERENCE IS. .
memo mac-193 cc-244
OK. .

(1 n is tvpset
NAME IS - TYPSET
TY P ES A RE - COM MA ND
DESCRIPTORS ARE- UTILITY EDITING
DATE IS- l/ls/65
AUTHOR IS - SALTZER
LANGUAGE IS - MAD
PURPOSE IS - USED TO INPUT AND EDIT 12-BIT (FULL MODE) MEMO I
EDITING IS BY CONTEXT AND WITHOUT LINE NUMBERS.
OFTEN USED WITH RUNOFF TO PREPARE MEMOS.

USAGE IS-(30 LINES FOLLOW)
TYPSET 'NAME'
'NAME' rS FIRST NAME OF FILE (IF FOUND) WITH SECOND NAME (MEMO).
THERE ARE TWO MODES OF OPERATION, INPUT AND EDIT.
IN INPUT MODI: LINES MAY BE TYPED CONTINUOUSLY
WITHOUT RESPONSE FROM THE TYPSET COMMAND.
TO CHANGE MODES TYPE A C.R.
REQUESTS MAY BE ABBREVIATED BY THEIR FIRST LETTER.
IN EDIT MODE REQUESTS ARE..

FIND 'LINE'
TO FIND LINE BEGINNING WITH THE NON BLANK CHARACTERS IN '] INK-

LOCATE 'STRING'
TO FIND THE LINE CONTAINING THE 'STRING' BEGINNING IN ANY COLUMN

NEXT T
TO MOVE TO THE NEXT I-TH LINE

DELETE 'I'
TO DELETE THE NEXT I LINES INCLUDING THE PRESENT ONE.

PRINT T'
TO PRINT I LINES.

RETYPE 'LINE'
THE PRESENT LINE IS REPLACED WITH 'LINE'

TOP
THE CURRENT POINTER IS SET TO BEFORE THE FIRST LINE IN THE FILE

BOTTOM
INPUT MODE IS ENTERED TO ADD LINES AT THE END OF THE FILE

INSERT 'LIN 10'
THE 'LINE' IS INSERTED AFTER THE CURRENT LINE

CHANGE * STRING 1*STRING2* IG
STRING2 IS MADE TO REPLACE STRING! IN I LINES
IF G IS GIVEN ALL OCCURRENCES OF STRING! IN A LINE ARE REPLACED.
' ' MAY BE ANY'' CHARACTER.

VERIFY ON/OFF
IF ON- FIND. NEXT, LOCATE. AND CHANGE REQUESTS WML BE VERIFIED
IF OFF-NO VERIFICATION WILL BE MADE.

SPLIT 'NAME'
THE LINES BEFORE HERE ARE FILED WITH NAME 'NAME'

ERASE 'X'
'X' IS SET TO THE ERASE CHARACTER

KILL 'X'
'X' IS SET TO THE KILL CHARACTER
REFERENCE IS- MEMO MAC-193 CC-244

OK. .

(The INFO command is described by the on-line system as)
(follows. This description can be obtained by typing a)
(C.R. after the INFO system is resumed.)

55

d n is info
NAME IS- INFO
TYPES ARE - COMMAND
DESCRIPTORS ARE- DOCUMENTATION
DATE IS- 1/08/65
AUTHOR IS - WINETT
LANGUAGE IS - COMIT
PURPOSE IS - (22 LINES FOLLOW)

THIS IS AN ON-LINE SYSTEM FOR STORING AND RETRIEVING INFORMATION
ABOUT THE FOLLOWING TYPES OF PROGRAMS ASSOCIATED WITH CTSS-
SYSTEM COMMANDS, SUPERVISOR ENTRIES, LIBRARY SUBPROGRAMS, AND
PUBLIC PROGRAMS.

THE FOLLOWING ITEMS OF INFORMATION ARE AVAILABLE ABOUT A
PROGRAM -

PROGRAM NAME (N) - A SINGLE WORD.
PROGRAM TYPE (T) - ONE OF THE FOLLOWING.. COMMAND, ENTRY,

LIBRARY, AND PUBLIC.
DESCRIPTORS (D) - KEY WORDS USED TO CLASSIFY THE PROGRAMS

IN THE INFORMATION FILES.
PURPOSE (P) - A SHORT ABSTRACT INDICATING THE CONTEXT IN

WHICH A PROGRAM MIGHT BE USED.
USAGE (U) - THE INSTRUCTIONS OF HOW TO USE THE PROGRAM.
PROGRAMMING LANGUAGE (L) - THE LANGUAGE IN WHICH THE PROGRAM

IS WRITTEN.
REFERENCE (R) - A BIBLOIOGRAPirY OF WHERE MORE INFORMATION

ABOUT A PROGRAM MAY BE OBTAINED.
AUTHOR (A)-THE NAME OF THE PERSON WHO IS RESPONSIBLE

FOR THE PROGRAM.
DATE (DATE) - THE DATE THE INFORMATION WAS LAST STORED OR

ALTERED.

USAGE IS -(23 LINES FOLLOW)
TO USE THIS INFORMATION SYSTEM, TYPE THE COMMAND 'INFO'.

REQUESTS TO THE SYSTEM ARE DESCRIBE (D), LIST (L), FIND (F),
STORE (S), ALTER (A), EDIT (E), AND REMOVE (R). TO OBTAIN A
DESCRIPTION OF EACH REQUEST, TYPE THE REQUEST NAME ONLY.

REQUESTS TO THE SYSTEM SPECIFY AN ITEM NAME, OR AN ITEM
NAME TOGETHER WITH AN ITEM VALUE ASSOCIATED WITH THE ITEM NAME
IN THE FORM 'ITEM NAME' IS/ARE 'ITEM VALUE'. THE REQUEST NAME IS
TYPED FIRST FOLLOWED BY ITEM NAMES AND ITEM VALUES WHEN
APPROPRIATE. AN ITEM VALUE BEGINS WITH THE WORD 'IS' OR 'ARE'
AND MUST END WITH A COMMA. THE WORD 'THEN' INDICATES THE TERMINATION
OF A REQUEST AND THUS ALLOWS MULTIPLE REQUESTS TO BE TYPED.
WORDS OTHER THAN ITEM NAMES OR ITEM VALUES OR THE WORD 'THEN' MAY BE
TYPED BUT ARE IGNORED.

REQUESTS AND ITEM NAMES MAY BE ABBREVIATED BY THEIR FIRST LETTER.
IF THE WORD 'QUIT' IS TYPED IN A FIELD IN PLACE OF AN ITEM NAME
THE PRESENT REQUEST IS IGNORED. IF TWO OR MORE INPUT FIELDS SPECIFY
THE VALUE OF AN ITEM THE LAST VALUE TYPED TAKES PRECEDENCE.

TO CONTINUE INPUT ON ANOTHER LINE PRECEDE THE CARRIAGE RETURN
(C.R.) BY A DASH (-). TO INCLUDE A COMMA (,) AS TEXT IN AN ITEM,
FOR EXAMPLE IN A SENTENCE DESCRIPTION, PRECEDE THE COMMA BY A
STAR (I.E.*,). TO INCLUDE A C.R. AS TEXT IN AN ITEM PRECEDE
THE C.R. BY A STAR (*).

WHEN IN DOUBT OF WHAT TO DO, TYPE A C.R.

REFERENCE IS - SEE JOEL WINETT, EXT 6039 OR 81-301.

OK. .

(Each request can be described by typing the request)
(name only.)

list
LIST 1(1) ... I(N), TYPE IS 'TYPE'
THE LIST REQUEST IS USED TO OBTAIN A LIST OF THE NAMES OF ALL

INFORMATION ITEMS, THE VALUES OF CERTAIN INFORMATION ITEMS, OR
OF A PARTICULAR TYPE. THE REQUEST SPECIFIES
ONE OR MORE OF THE FOLLOWING ITEMS TO BE LISTED - ITEMS, AUTHORS,

V.

DESCRIPTORS, TYPES, LANGUAGES, NAMES, OR TYPE IS COMMAND, ENTRY,
LIBRARY, OR PUBLIG.
OK. .

describe then find
DESCRIBE NAME IS 'NAME', 1(1)... I(N)
THE DESCRIBE REQUEST IN USED TO OBTAIN THE DOCUMENTATION OF A

PROGRAM WHOSE NAME IS KNOWN. THE INPUT OF THIS REQUEST GIVES
THE PROGRAM NAME AND THE NAMES OF THE DESIRED ITEMS OF INFORMATION.
IF NO ITEM NAME IS SPECIFIED THE INFORMATION ON ALE ITEMS WILL
BE PRINTED. FOR EXAMPLE TYPE-

DESCRIBE DATE AND PURPOSE OF PROGRAM WHOSE NAME IS INFO
OK. .

FIND 1(1) IS V(1) I(N) IS V(N)
THE FIND REQUEST IS USED TO PERFORM A SEARCH FOR THE PROGRAM
OR PROGRAMS WHICH HAVE PARTICULAR INFORMATION ITEM VALUES.
THE ITEMS TO HE MATCHED ARE GIVEN BY TYPING THE ITEM NAMES TOGETHER
WITH THEIR ITEM VALUES. ACCEPTABLE ITEMS FOR SEARCHING ON ARE
-TYPE, LANGUAGE, DESCRIPTORS. AUTHOR, AND DATE. A DATE VALUE
MUST BE GIVEN IN THE FORM-DATE IS MM/DD/YY. WHERE MM IS -\ NUMERICAL
MONTH. DD IS A NUMERICAL DAY AND YY IS A NUMERICAL YEAR. ALL PROGRAMS
WHOSE DATE IS GREATER THAN THAT GIVEN WILL BE PRINTED, (I.E.THE MOST
RECENTLY DOCUMENTED PROGRAMS). DESCRIPTORS ARE SINGLE WORDS TYPED
IN ANY' ORDER AND SEPARATED MY SPACES. A LIST OF DESCRIPTORS MAY BE
OBTAINED BY TYPING - LIST, DESCRIPTORS.

FOR EXAMPLE TO FIND THE COMMANDS WHICH WERE DOCUMENTATED
SINCE JULY 4TH. AND HAVE AT LEAST THE DESCRIPTORS UTILITY TYPE-
FIND, DATE IS 6/04/64, DESCRIPTORS ARE DISK READ
OK. .

store then edit then alter then remove
STORE NAME IS 'NAME', FILE IS 'FILE'. 1(1) IS V(l) I(N) IS Y(\
THE STORE REQUEST ENABLES ONE TO ENTER INFORMATION ABOI T A NEW

PROGRAM INTO AN INFORMATION FILE. THIS REQUEST REQUIRES INFORMATION
\ All ES FOR EACH REQUIRED ITEM IN THE FORM- 'ITEM NAME' IS/ARE
'ITEM VALUE'. THE NAME OF NEW ITEMS MAY BE DEFINED BY TYPING THE NEW
ITEM NAME AND ITS VALUE. WHEN AN ri'EM NAME IS PRINTED. TYPE THE
ITEM VALUE. ITEM NAMES AND ITEM VALUES OF OTHER ITEMS MAY BE
SUPPLIED BY TYPING A COMMA AFTER EACH ITEM VALUE THUS ANTICIPATING
THE REQUIRED INPUT AND REDUCING ON-LINE INTERACTION.
OK. .

EDIT NAME IS 'NAME'
THE EDIT REQUEST CREATES A BCD FILE (AS A LINE MARKED I'll E) FOR

USE IN MAKING CHANGES TO INFORMATION ITEMS I SING SOME CTSS EDIT
PROCEDURE. THE FILE CREATED CONTAINS ALL INFORMATION ITEMS
EXCEPT THOSE ITEMS WHICH CAN BE USED WITH THE FIND REQUEST.
EACH INFORMATION ITEM IS PRECEDED BY A LINE GIVING THE ITEM
NAME PREFIXED BY A PERIOD (E.G.- . USAGE) AND CONSEQUENT!/* NO
LINE OF AN ITEM SHOULD BEGIN WITH A PERIOD. THE FIRST NAME
OF THE FILE CREATED IS THE SAME AS THE PROGRAM NAME AM) THE
SECOND IS 'INFO'.
OK. .

ALTER NAME IS 'NAME'. 1(1) ISV(l) I(N) IS V(N)
THE ALTER REQUEST ALLOWS ONE TO CHANGE ITEM VAI.I ES IN THE INFORMATION

DOCI MENTING A PROGRAM OR TO STORE ANOTHER INFORMATION ITEM.
THE ALTER REQUEST REQUIRES THAT THE PROGRAM NAME BE SPECIFIED.
OK. .

REMOVE NAME IS 'NAME', D IS 'D', A IS 'A', ITEM IS 'I'
THE REMOVE REQUEST IS USED TO DELETE AN AUTHOR, DESCRIPTOR, OR

ITEM NAME FROM THE APPROPRIATE LIST OR TO REMOVE THE DOCI M ENTATION
OF A PROGRAM FROM AN INFORMATION FILE. THIS REQUEST MIGHT BE
USED WHEN A PROGRAM IS DELETED FROM CTSS. VERIFICATION OF EACH
REQUEST TO REMOVE THE DOCUMENTATION OF A PROGRAM IS REQUIRED.
OK. .

end
55H REGISTERS OF THE WORKSPACE WERE UNUSED.

R 40.300+34.216

47

APPENDIX B

LIST OF PUBLIC PROGRAMS

?97 TRACKS USED ON 1/18/65

RFN SAVED - DBGMEM SA\ ED 1. s WED
MON04 SAVED SQUALL INFO FILES INFO

AEDLB1 BSS DO SA\ ED - DISTSS SAVED
APPEND SAVED VARFIX INFO - SUBUSE SWIM)
SQZBCD BSS - (BLOOD) BSS - VARFIX SAVED

WHO SAVED SLEEP SAVED - A ED LIB ESS
DIS SAVED BLODI INST CTSS S WED

RELRW SA V ED PADBCD BSS - SAVED. SAVED
SAFE SAVED SAFE INFO -WRFULL ESS

PRSYMB SAVED PADBCD SAVED - RERUN SA V El)
SQZBCD SAVED I .ISTCF SAVED LISTCF INFO

FDOCT SAVED FDOCT INFO OPS2 WORDS
DSKLIB BSS SET DATA -RUNBUG SAVED

OPS 2 BSS OPS SAVED MACH1 BSS
STOMAP SAVED STOMAP INFO LIST INFO

PLIST SAVED LIST SAVED QUES SAVED
OCT1' R'! SAVED SUBLIS DATA CHAIN DATA
EPREAD DATA DISX SAVED - SLPLIB BSS

MLIB BSS CMWRIT DATA - CTEST INFO
2AED . LOAD . RBIN EPS 21 BSS
MAP SAVED BASIS BSS CONVT ESS

TRANSF BSS INTEGR BSS DATA SAVED
CONVOI. ESS FIE DIR GETF BSS
DIFFER BSS - M IN MAX ESS 6T012 SAVED

GAME BSS ESLOPS CRUNCH TRACE ESS
COMMND LIST APIAPT SAVED - STR004 FINK

SUB BSS CTEST4 SAVED - STR002 FINK
STR003 LINK STR005 LINK SI R00(FINK.
OPL65 SAVED STR007 LINK B WI.I'S BSS

CTEST3 INFO UPDBSS SAVED - DELRQ SAVED
STR008 LINK QUES INFO - OLDRQ SAVED

NEWCT3 SAVED IF INFO IF SAVED
SLAVE SAVED - (M EMO) COMAND INFO

AEDB1 G BSS AED002 SYSTEM A ED 00 i SYSTEM
STR001 LINK - SAVED USER REMARK

39

APPENDIX C

SUBROUTINE USAGE TABLE FOR TSLIB1

(This (able was produced using the SUBUSE command written)
(by Barry Wolman. The table was produced on 12/22/64.)

A \ A
ATN
BLK
COM
COS
COT
DIM
BXP
FLK
INT
LOG
MOD
OF? A
SIN
SQR
TAN
ZEL

A COS
ASIN
ATAN
BZEL
COLT

u EA D
DFAD
DFDP
mail'
DFSB
DPNV
DUMP
ENDF

EXIT

IS \()T USED.
IS NOT USED.
IS CALLED BY
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS CAM,I'D RY
IS OALLED RY
IS NOT USED.
IS CALLED RY
[S NOT USED.
IS NOT USED.
IS NOT USED.
is NOT I SED.
IS NOT USED.
IS NOT USED.

IS NOT USED.
IS NOT USED.
IS NOT USED.
rs CALLED BY
IS CALLED RY

SEEK

.01300
SEEK

.01300

IS CALLED RY
IS NOT USED.
IS CALLED RY
IS CALLED RY
rS NOT USED.
LS NOT USED.
IS NOT USED.
rS CALLED RY

IS CALLED RY

(STB) (RWT)
SCHAIN BR RAD H\\ RITE I (READ
SETVB SEEK XECOM i:< >Fxn
MOVE1 DWRITE SETERR
EXIT

(IOH)
(IOH)

BREAD DREAD SET\ r. SEEK
EOFXIT (RWT)
(FPT) . SET BREAD IU\ RITE
EOFXIT RECOl i FREE i.ni iir
SETVB
(RWT) FILE IS CAL LED BY . . . (RWT)

FREE IS NOT USED.
FRET [S NOT USED.
GCLC IS \< i r USED.
GCLS rs NOT USED.
GLOC IS NOT USED
CM EM is NOT USED.
GNAM IS CALLED RY . SCHAIN BREAD BWR1 1 i: nu LAP

SETVB SEEK FSTAT R EN AM 1
CTTMODE DELETE COM \l!(! COMF1.
PRNTP RDFLXB GM EM ('1INCI »M
DWRITE DSKDMP GCLC GETCF

INDV IS NOT USE] i
. RSE IS NOT USED.
. RSR IS NOT USED
.EFT IS NOT USED.
. MTX IS NOT USED.
. RWT IS NOT USED.
. SET IS \o I USED.

4 I

MAXO
MAX1
MINO
MINI
SCLC
SCLS
SEEK
SETU
SFDP
SIGN
SLOC
SMEM
SNAP

SQRT
SRCH
TANH
XDIM
XFIX
XINT
XLOC
XMOD

IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS CALLED BY
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS CALLED BY

IS CALLED BY
IS CALLED BY
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.

(STB) (TSH) SCHAIN

(SCH) (TSH) BREAD BWRITE
DWRITE SETVB SEEK DSKDMP
(RWT) SYPAR SETERR DREAD
DELETE
.01300
SEEK (RWT)

BCD EC
BREAD
CLOUT
COMFL
DEFBC
DELBC
DERBC
DREAD
ENDRD
ERASE
ERROR

EXITM
EXMEM
EXP(1
EXP(2
EXP(3
FSTAT
GETCF
OETTM
GTNAM
IOEND
IOITR
IOPAR
IOSCP
IOSET
. DUMP
. FILE
. LOAD
. LOOK
. READ
. SAVE
. SEEK
JOBTM
LDUMP

LJUST
MOVE!
MOVE2
MOVE3
OCABC

IS
IS
IS
IS
IS
IS
IS
IS
IS
IS
IS

CALLED BY
CALLED BY
CALLED BY
NOT USED.
CALLED BY
CALLED BY
NOT USED-
CALLED BY
CALLED BY
NOT USED-
CALLED BY

IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS CALLED BY
IS NOT USED.
IS NOT USED.
IS CALLED BY
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS NOT USED
IS NOT USED.
IS CALLED BY
IS CALLED BY
IS CALLED BY
IS NOT USED.
IS NOT USED.
IS NOT USED.
IS CALLED BY
IS NOT USED.
IS CALLED BY

IS CALLED BY
IS CALLED BY
IS CALLED BY
IS CALLED BY
IS CALLED BY

EOFXIT
(STB)
EXIT

GTNAM
(STB)

SCHAIN
(TSH)

(FPT)
LOG
EXP

(STB)

SCHAIN

DSKDMP
SEEK
DSKDMP

SEEK

.01300
SQRT
DELETE
SCHAIN
SCHAIN
SCHAIN
(FPT)

(RWT)

.01300
SQRT

EXP(2
TAN

A COS
INDV

GTNAM

XECOM

SRCH
SYPAR

EXP(2
TAN

XECOM
XECOM
XECOM

(RWT)

A COS
INDV

GCLC
GCLC
GCLC

EXP
LOG

42

OCDBC iS CALLED BY . . SNAP
OCLBC [S NOT USED.
OCRBC IS NOT USED.
PDUMP ts NOT USED.
PRNTP IS NOT USED.
RANNO IS NOT USED.
RDFLX IS CALLED BY . . .RDATA (CSH) DELET1
RJUST IS CALLED BY . . SCI IAIN X ECOM
SETVB IS NOT USED.
SLEEP IS NOT USED.
STQUO IS NOT USED.
SYPAR IS NOT USED.
TIMER IS NOT USED.
VREAD IS NOT USED.
WRFLX IS CALLED BY . . STOMAP (FPT) .PCOM1 STOMAP (FPT) . PCOMT .RDATA

ERROR SCHAIN BREAD BWRITE
SETVB SEEK (IOH) (EXE)
EOFXIT SETERR SNAP FREE
PRNTP (SPH) DREAD (RWT)
EXIT

XECOM IS NOT USED.
XMAXO IS NOT USED.
XMAX1 IS NOT USED.
XMINO IS NOT USED.
XMIN1 IS NOT USED.
XSK'.N IS NOT USED.
(BST) ts CALLED BY . . . BSF
(CSH) IS NOT USED.
(EFT) IS CALLED BY . . . BSF
(EXE) IS CALLED BY . . (IOH)
(FID IS CALLED BY . . DWRITE
(FPT) IS CALLED BY . . .SETUP
(IOH) IS CALLED BY . (SCH)

DWRITE
(SPH)
DREAD

(RLR) rs NOT USED.
(RTN) IS CALLED BY . . DREAD
(RWT) IS CALLED BY . . . BSF
(SCH) [S NOT USED.
(SLI) IS NOT USED.
(SLO) IS NOT USED.
(SPH) IS NOT USED.
(STB) rs NOT USED.
(STH) IS NOT USED.
(TSB) IS NOT USED.
(TSH) IS NOT USED.
(WLR) IS NOT USED.

AKNOLG IS NOT USED.
APPEND rs CALLED BY . . (SCH) (STH)
ASSIGN IS CALLED BY . . (SCH) (STB)
BWRITE IS CALLED BY . . (STB)
CHMODE IS NOT USED.
CHNCOM IS CALLED BY . SCHAIN EXIT
CLKOUT IS NOT USED.
CLOCOF IS NOT USED.
CLOCON [S NOT USED.
COMARC [S NOT USED.
COMFII. IS CALLED BY . . COMFL
DC EXIT IS NOT USED.
DELETE IS CALLED BY . . SCHAIN XECOM
DORMNT IS CALLED BY . . EXIT
DSKDMP IS NOT USED.
DSKI.OO IS NOT USED.
DWRITE IS NOT USED.
END.TOB ts CALLED BY . . .PRSLT DFAD
EOFXIT IS CALLED BY . . (TSH) BREAD

(CSH) (TSH)

GTNAM

DREAD

RENAME

SETVB

43

FWRITE IS NOT USED.
GETBRK IS NOT USED.
GETCFN IS NOT USED.
GETCLC IS CALLED BY . . SCHAIN XECOM GCLC
GETCLS IS CALLED BY . . SCHAIN XECOM GCLC
GETCOM IS CALLED BY . , . COMARG
GETIME IS NOT USED.
GETLOC IS CAL: LED BY . . . SYPAR
GETMEM IS CALLED BY . . BREAD BWRITE SRCH FREE

GMEM
IOHSIZ IS NOT USED.
.01300 IS NOT USED,
.01301 IS NOT USED.
.01311 IS NOT USED.
.03310 IS NOT rsKi).
.03311 IS CAL: LED BY . . .RDATA (IOH)
.APEND IS CALLED BY . . SEEK
. ASIGN IS CALLED BY . . SEEK
. COM NT IS NOT rSLi).
.DLETE IS CALLED BY . . SCHAIN XECOM DELETE
.ENDRD IS CALLED BY . . SEEK SRCH (RWT)
.ERASE IS CALLED BY . . DELETE
. FILDR IS NOT USED.
.FSTAT IS CALLED BY . . . (SCH) SCHAIN FSTAT RENAME

DIOLETE
. PCOMT IS NOT USED.
. PNCIIL IS NOT USED.
.PRBCD IS NOT USED.
. PRINT IS CALLED BY PRSLT
.PROCT IS NOT USED.
.PRSLT IS NOT USED.
.PUNCH IS NOT USED.
.RDATA IS NOT USF.n.
. READK IS CALLED BY . . . (TSH) BREAD DREAD SETVB
.READL IS NOT USED.
.RELRW IS NOT USED.
.RENAM IS CALI LED BY .. . RENAME CHMODE DELETE
. RESET IS NOT USED.
.RPDTA IS NOT USED.
. RSTOR IS NOT USED.
. RSTRN IS NOT USED.
. SAVRN IS NOT USED.
. SCRDS IS NOT USED.
.SETUP IS NOT USED.
. SPRNT IS CALLED BY . . . PRSLT .SET
.TAPRD IS NOT USED.
.TAPWR IS NOT USED.
.WRITE IS CALLED BY . . . (SCH) BWRITE DWRITR SETVB
KILLTR IS NOT USED.
MOVIE) IS CALLED BY . . . STOMAP (FPT)
PRNTPA IS NOT USED.
PRNTPC IS NOT USED.
RDFLXA IS CALLED BY . . . RDFLXB
RDFLXB IS NOT USED.
RDFLXC IS NOT USED.
RECOUP IS CAL: LED BY . . . SEEK (EXE) SNAP
RENAME IS NOT USED.
RSCLCK IS NOT USED.
RSTRTN IS NOT USED.
SAVBRK IS NOT USED.
SCHAIN IS NOT USED.
SETBCD IS NOT USED.
SETRRK IS NOT USED.
SETCLC IS CALI LED BY . . . SCHAIN XECOM GCLC
SETCLS IS CALI LED BY . . . SCHAIN XECOM GCLC
SETEOF IS CALLED BY . . . SCHAIN

4 1

SETERR IS NOT USED.
SETFMT IS NOT USED.
SETFUL IS NOT USED.
SETLOC IS NOT USED.
SETMEM IS CALLED BY

SETNAW1 [S NOT USED.
SETVBF rs NOT USED.
STOMAP IS NOT USED.
STOPCL IS NOT USED.
TIMLFT IS NOT USED.
TSSFIL IS CALLED BY
USRFIL IS CALLED BY
VWRITE rs NOT USED.
WRDONT IS NOT USED.
WRFLXA IS CALLED BY
X DICTUM IS NOT USED.
XSIMEQ IS NOT USED.
(EFTM) IS CALLED BY
(LFTM) IS (' M.LED BY
(SPHM) IS NOT USED.
(STUM) IS NOT USED.
(TSHM) IS NOT USED.

BREAD
CM EM

SYPAR
SYPAR

DELETE

. SETUP
(FPT)

BWRITE SUCH FREE

PRNTP

RDAT \
RDATA

(IOH)
(iom

MISSING SUBROUTINES.

MOVIE)

45

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)

Lincoln Laboratory, M.I.T.

2a. REPORT SECURITY CLASSIFICATION

Unclassified
26. GROUP

None
3. REPORT TITLE

On-Line Documentation of the Compatible Time-Sharing System

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Technical Report
S. AUTHOR(S) (Last name,, first name, initial)

Winett, Joel M.

6. REPORT DATE

12 May 1965

7a. TOTAL NO. OF PAGES

52

7b. NO. OF REFS

7

8a. CONTRACT OR GRANT NO.

AF 19(628)-500
b. PROJECT NO.

649L

9a. ORIGINATOR'S REPORT NUMBERISI

TR-387

96. OTHER REPORT NOISI (Any other numbers that may be
assigned this report)

ESD-TDR-65-68

10. AVAILABILITY/LIMITATION NOTICES

None

II. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Air Force Systems Command, USAF

13. ABSTRACT

The dissemination of information about computer programs is hampered because of the lack
of conformity in documentation, the delays inherent in any distribution system, and the inability
to select only desired information without being flooded with information which is not of present
interest. An on-line system for storing and retrieving information about the programs associ-
ated with the Compatible Time-Sharing System (CTSS) has been developed to be included as a
CTSS command. This system will help to document the system commands, supervisor entries,
library subprograms, and public programs. These types of programs have been chosen since
there is an urgent need for having this documentation available on demand, i.e., on-line.

14. KEY WORDS

documentation
computer programs
catalogs

information retrieval
information systems
computer applications

on-line systems
time sharing
data storage

46 UNCLASSIFIED

Security Classification

